यदि समान्तर श्रेणी का प्रथम पद, दूसरा पद और अन्तिम पद क्रमश:  $a,\;b,\;2a$ हैं, तो योग होगा

  • A

    $\frac{{ab}}{{b - a}}$

  • B

    $\frac{{ab}}{{2(b - a)}}$

  • C

    $\frac{{3ab}}{{2(b - a)}}$

  • D

    $\frac{{3ab}}{{4(b - a)}}$

Similar Questions

$250$ से $1000 $ तक की संख्यायें जो $3$ से विभाजित हों, का योग होगा

यदि $A =\left\{1, a _1, a _2 \ldots \ldots a _{18}, 77\right\}$ पूर्णांको का एक समुच्चय है जिसमें $1 < a _1 < a _2 < \ldots . . < a _{18} < 77$ है। माना समुच्चय $A + A =\{ x + y : x , y \in A \}$ में ठीक $39$ अवयव है। तब $a_1+a_2+\ldots . .+a_{18}$ का मान होगा

  • [JEE MAIN 2022]

किसी समांतर श्रेणी का $p$ वाँ पद $\frac{1}{q}$ तथा $q$ वाँ पद $\frac{1}{p}$, हो तो सिद्ध कीजिए कि प्रथम $p q$ पदों का योग $\frac{1}{2}(p q+1)$ होगा जहाँ $p \neq q$

यदि $a{x^2} + bx + c = 0$ के मूलों का योग उनके व्युत्क्रम के वर्गों के योग के बराबर हो, तो $\frac{c}{a},\frac{a}{b},\frac{b}{c}$ होंगे

समान्तर श्रेणी के तीन क्रमागत पद इस प्रकार हैं कि उनका योग $18$ तथा उनके वर्गों का योग $158$ है तब इस श्रेणी का महत्तम पद होगा