समीकरण $P = \frac{{a - {t^2}}}{{bx}}$ में $P$ दाब, $x$ दूरी तथा $t$ समय है तब $\frac{a}{b}$ की विमा होगी

  • A

    ${M^{ - 1}}{L^0}{T^{ - 2}}$

  • B

    ${M^1}{L^0}{T^{ - 2}}$

  • C

    ${M^1}{L^0}{T^{ 2}}$

  • D

    ${M^1}{L^1}{T^{ - 2}}$

Similar Questions

यदि बल [F], त्वरण [A] तथा समय [T] को मुख्य भौतिक राशियाँ मान लिया जाए, तो ऊर्जा की विमा ज्ञात कीजिए।

  • [NEET 2021]

यदि ऊर्जा $(E)$, वेग $(v)$ तथा समय $(T)$ को मूल राशियाँ माना जाये तो पृष्ठ तनाव की विमा होंगी

  • [AIPMT 2015]

किसी बीकर में रखे एक द्रव का घनत्व $\rho kg / m ^{3}$, विशिष्ट ऊष्मा $S J / kg ^{\circ} C$ तथा श्यानता $\eta$ है। यह बीकर $h$ ऊँचाई तक द्रव से भरा है। बीकर को एक 'हॉट प्लेट' पर रखने पर, उसमें रखे द्रव की सबसे ऊपर तथा सबसे नीचे की परत के बीच ताप का अन्तर $\Delta \theta\left({ }^{\circ} C\right.$ में ) होता है। एक विद्यार्थी के अनुसार, इस अवस्था में संवहन द्वारा प्रति इकाई क्षेत्रफल ऊष्मा का स्थानान्तरण, अर्थात् $({Q} / A )$ का मान $\eta$, $\left(\frac{ S \Delta \theta}{ h }\right)$ तथा $\left(\frac{1}{\rho g }\right)$ पर निर्भर करना चाहिये, तो, $( {Q} / A )$ के मान के लिये सही विकल्प होगा :

  • [JEE MAIN 2015]

एक विमाहीन राशि $P$ के लिये व्यंजक $P =\frac{\alpha}{\beta} \log _{ e }\left(\frac{ kt }{\beta x }\right)$ द्वारा दिया जाता है, जहाँ $\alpha$ तथा $\beta$ नियतांक है, $x$ दूरी एवं $k$ बोल्ट्जमान नियतांक है तथा $t$ तापमान है, तो राशि $\alpha$ की विमाएँ होगी :

  • [JEE MAIN 2022]

किसी वियुक्त निकाय में किसी गैस के अणुओं द्वारा किया गया कार्य $W =\alpha \beta^{2} e ^{-\frac{x^{2}}{\alpha kT }}$ द्वारा निरूपित किया गया है, यहाँ $x$ विस्थापन, $k$-बोल्ट्ज़मान नियतांक तथा $T$ ताप है। $\alpha$ और $\beta$ स्थिरांक हैं। $\beta$ की विमा होंगी।

  • [JEE MAIN 2021]