किसी बीकर में रखे एक द्रव का घनत्व $\rho kg / m ^{3}$, विशिष्ट ऊष्मा $S J / kg ^{\circ} C$ तथा श्यानता $\eta$ है। यह बीकर $h$ ऊँचाई तक द्रव से भरा है। बीकर को एक 'हॉट प्लेट' पर रखने पर, उसमें रखे द्रव की सबसे ऊपर तथा सबसे नीचे की परत के बीच ताप का अन्तर $\Delta \theta\left({ }^{\circ} C\right.$ में ) होता है। एक विद्यार्थी के अनुसार, इस अवस्था में संवहन द्वारा प्रति इकाई क्षेत्रफल ऊष्मा का स्थानान्तरण, अर्थात् $({Q} / A )$ का मान $\eta$, $\left(\frac{ S \Delta \theta}{ h }\right)$ तथा $\left(\frac{1}{\rho g }\right)$ पर निर्भर करना चाहिये, तो, $( {Q} / A )$ के मान के लिये सही विकल्प होगा :

  • [JEE MAIN 2015]
  • A
    $\,\eta \cdot \left( {\frac{{S\Delta \theta }}{h}} \right)\left( {\frac{1}{{\rho g}}} \right)$
  • B
    $\,\left( {\frac{{S\Delta \theta }}{{\eta h}}} \right)\left( {\frac{1}{{\rho g}}} \right)$
  • C
    $\,\frac{{S\Delta \theta }}{{\eta h}}$
  • D
    $\eta \,\frac{{S\Delta \theta }}{h}$

Similar Questions

यदि $M = $द्रव्यमान, $L = $लम्बाई, $T = $समय तथा $I = $विद्युत धारा तथा यदि $[{\varepsilon _0}]$निर्वात की विद्युतशीलता तथा $[{\mu _0}]$ निर्वात की चुम्बकशीलता की विमा को प्रदर्शित करें तो $M,L,T$ तथा $I$ के पदों में सही विमीय सूत्र है। जहाँ संकेतों के सामान्य अर्थ हैं

  • [IIT 1998]

तार का यंग मापांक निर्धारित करने के लिये सूत्र है $Y = \frac{FL}{A\Delta L};$ यहाँ $L = $लम्बाई, $A = $तार की अनुप्रस्थ काट का क्षेत्रफल, $\Delta L = $तार की लम्बाई में परिवर्तन जब इसे $F$ बल से खींचा जाता है। इसे ${\rm{C G S}}$ पद्धति से ${\rm{M K S}}$ पद्धति में बदलने के लिये रुपान्तरण गुणांक ............... $10^{-1} \mathrm{N/m}^{2}$ है

राशियाँ $A$ और $B$ सूत्र $m = A/B$ से सम्बन्धित हैं। यहाँ पर $m = $ रैखिक घनत्व तथा $A$ बल को प्रदर्शित कर रहा है। $B$ की विमायें होंगी

कोई बल $F = at + b{t^2}$से प्रदर्शित किया जाता है, जहाँ $t$ समय है $a$ व $b$ की विमायें होगी

यदि $L,\,\,C$ तथा $R$ क्रमश: प्रेरकत्व, धारिता तथा प्रतिरोध प्रदर्शित करते हैं, तो निम्न में से कौन आवृत्ति की विमायें प्रदर्शित नहीं करेगा

  • [IIT 1984]