Without actually calculating the cubes, find the value of each of the following : $(-12)^{3}+(7)^{3}+(5)^{3}$
$1165$
$-1165$
$-1260$
$1260$
Write the following cubes in expanded form : $\left[x-\frac{2}{3} y\right]^{3}$
Verify that $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
Find the remainder obtained on dividing $p(x)=x^3+1$ by $x+1$.
Classify the following as linear, quadratic and cubic polynomials :
$(i)$ $1+x$
$(ii)$ $3 t$
$(iii)$ $r^{2}$
$(iv)$ $7 x^{3}$
Factorise : $2 y^{3}+y^{2}-2 y-1$