Classify the following as linear, quadratic and cubic polynomials :

$(i)$ $1+x$

$(ii)$ $3 t$

$(iii)$ $r^{2}$

$(iv)$ $7 x^{3}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(i) $ $1+x$

$\because$ The degree of $1+x$ is $1$                                 $\therefore$ It is a linear polynomial.

$(ii)$ $3 t$

$\because$ The degree of $3 t$ is $1 .$                                $\therefore$ It is a linear polynomial.

$(iii)$ $r^{2}$

$\because$ The degree of $r^{2}$ is $2$                              $\therefore$ It is a quadratic polynomial.

$(iv)$ $7 x^{3}$

$\because$ The degree of $7 x ^{3}$ is $3 .$                    $\therefore$ It is a cubic polynomial.

Similar Questions

Find the value of $k,$ if $x-1$ is a factor of $4 x^{3}+3 x^{2}-4 x+k$.

Find the value of the polynomial $5x -4x^2+ 3$ at $x = -\,1$.

Evaluate the following using suitable identities : $(102)^{3}$

Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by $x-a$.

Factorise : $2 y^{3}+y^{2}-2 y-1$