गुणोत्तर श्रेणी $2,8,32, \ldots$ का कौन-सा पद $131072$ है ?
Let $131072$ be the $n^{\text {th }}$ term of the given $G.P.$ Here $a=2$ and $r=4$
Therefore $\quad 131072=a_{n}=2(4)^{n-1} \quad$ or $\quad 65536=4^{n-1}$
This gives $4^{8}=4^{n-1}$
So that $n-1=8,$ i.e., $n=9 .$ Hence, $131072$ is the $9^{\text {th }}$ term of the $G.P.$
यदि $a,\;b,\;c$ गुणोत्तर श्रेणी में हों, तो
यदि ${\log _x}a,\;{a^{x/2}}$ व ${\log _b}x$ गुणोत्तर श्रेणी में हों, तब $x =$
गुणनफल $2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}}$ $\infty$ तक बराबर है
यदि $a,b,c$ समान्तर श्रेणी में हों, तो ${2^{ax + 1}},{2^{bx + 1}},\,{2^{cx + 1}},x \ne 0$ होंगे
$\overline {0.037} $ का मान, जहाँ $\overline {.037} $ संख्या $0.037037037........$ को निरूपित करता है