Which statement given below is tautology ?
$p \rightarrow( p \Lambda( p \rightarrow q ))$
$( p \Lambda q ) \rightarrow(\sim( p ) \rightarrow q ))$
$( p \Lambda( p \rightarrow q )) \rightarrow \sim q$
$p V ( p \Lambda q )$
$(\sim (\sim p)) \wedge q$ is equal to .........
The statement $B \Rightarrow((\sim A ) \vee B )$ is equivalent to
Let $\Delta, \nabla \in\{\wedge, \vee\}$ be such that $( p \rightarrow q ) \Delta( p \nabla q )$ is a tautology. Then
$( S 1)( p \Rightarrow q ) \vee( p \wedge(\sim q ))$ is a tautology $( S 2)((\sim p ) \Rightarrow(\sim q )) \wedge((\sim p ) \vee q )$ is a Contradiction. Then
Contrapositive of the statement:
'If a function $f$ is differentiable at $a$, then it is also continuous at $a$', is