નીચેના પૈકી ક્યુ વિધાન નિત્યસત્ય છે?
$((\sim q) \wedge p) \wedge q$
$((\sim q ) \wedge p ) \wedge( p \wedge(\sim p ))$
$((\sim q ) \wedge p ) \vee( p \vee(\sim p ))$
$( p \wedge q ) \wedge(\sim( p \wedge q ))$
નીચેના પૈકી કયું નિત્ય સત્ય વિધાન નથી.
આપેલ વિધાન જુઓ.
$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ એ સંપૂર્ણ સત્ય છે.
$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ એ સંપૂર્ણ અસત્ય છે.
નીચેના વિધાનો ધ્યાનમાં લ્યો,
$P : 5$ એ અવિભાજય સંખ્યા છે
$Q : 7$ એ $192$ નો એક અવયવ છે
$R : $ $5$ અને $7$ નો લ.સા.અ. $35$ થાય
તો નીચેનામાંથી ક્યું વિધાન તાર્કિક રીતે સાચું થાય ?
નીચેની વિધાનો ગણતરીમાં લોઃ
$P :$ મને તાવ આવે છે.
$Q :$ હું દવા નહીં લઉં.
$R :$ હું આરામ કરીશ.
વિધાન “જો મને તાવ હોય, તો હું દવા લઈશ અને હું આરામ કરીશ" એ ને $...........$ સમકક્ષ છે.
"જો બે સંખ્યાઓ સરખી ન હોય તો તેમના વર્ગો પણ સરખા ન થાય ' આ વિધાનનું સામાનાર્થી પ્રેરણ .......... થાય