Which of the following points lies on the locus of the foot of perpendicular drawn upon any tangent to the ellipse, $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ from any of its foci?

  • [JEE MAIN 2020]
  • A

    $(-1, \sqrt{3})$

  • B

    $(-1, \sqrt{2})$

  • C

    $(-2, \sqrt{3})$

  • D

    $(1,2)$

Similar Questions

The locus of the middle point of the intercept of the tangents drawn from an external point to the ellipse ${x^2} + 2{y^2} = 2$ between the co-ordinates axes, is

  • [IIT 2004]

Let a tangent to the Curve $9 x^2+16 y^2=144$ intersect the coordinate axes at the points $A$ and $B$. Then, the minimum length of the line segment $A B$ is $.........$

  • [JEE MAIN 2023]

Let $PQ$ be a focal chord of the parabola $y^{2}=4 x$ such that it subtends an angle of $\frac{\pi}{2}$ at the point $(3, 0)$. Let the line segment $PQ$ be also a focal chord of the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$. If $e$ is the eccentricity of the ellipse $E$, then the value of $\frac{1}{e^{2}}$ is equal to

  • [JEE MAIN 2022]

If the co-ordinates of two points $A$ and $B$ are $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$ respectively and $P$ is any point on the conic, $9 x^{2}+16 y^{2}=144,$ then $PA + PB$ is equal to

  • [JEE MAIN 2020]

The length of the latus rectum of an ellipse is $\frac{1}{3}$ of the major axis. Its eccentricity is