The length of the latus rectum of an ellipse is $\frac{1}{3}$ of the major axis. Its eccentricity is
$\frac{2}{3}$
$\sqrt {\frac{2}{3}} $
$\frac{{5 \times 4 \times 3}}{{{7^3}}}$
${\left( {\frac{3}{4}} \right)^4}$
A ray of light through $(2,1)$ is reflected at a point $P$ on the $y$ - axis and then passes through the point $(5,3)$. If this reflected ray is the directrix of an ellipse with eccentrieity $\frac{1}{3}$ and the distance of the nearer focus from this directrix is $\frac{8}{\sqrt{53}}$, then the equation of the other directrix can be :
Let $\mathrm{E}$ be an ellipse whose axes are parallel to the co-ordinates axes, having its center at $(3,-4)$, one focus at $(4,-4)$ and one vertex at $(5,-4) .$ If $m x-y=4, m\,>\,0$ is a tangent to the ellipse $\mathrm{E}$, then the value of $5 \mathrm{~m}^{2}$ is equal to $.....$
Let $S$ and $S\,'$ be the foci of an ellipse and $B$ be any one of the extremities of its minor axis. If $\Delta S\,'BS$ is a right angled triangle with right angle at $B$ and area $(\Delta S\,'BS) = 8\,sq.$ units, then the length of a latus rectum of the ellipse is
Let the maximum area of the triangle that can be inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1$, a $>2$, having one of its vertices at one end of the major axis of the ellipse and one of its sides parallel to the $y$-axis, be $6 \sqrt{3}$. Then the eccentricity of the ellispe is
If $y = mx + c$ is tangent on the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$, then the value of $c$ is