Which of the following is a tautology?
$(\sim \mathrm{p}) \wedge(\mathrm{p} \vee \mathrm{q}) \rightarrow \mathrm{q}$
$(\mathrm{q} \rightarrow \mathrm{p}) \vee \sim(\mathrm{p} \rightarrow \mathrm{q})$
$(p \rightarrow q) \wedge(q \rightarrow p)$
$(\sim \mathrm{q}) \vee(\mathrm{p} \wedge \mathrm{q}) \rightarrow \mathrm{q}$
Let $p$ and $q$ be two statements.Then $\sim( p \wedge( p \Rightarrow \sim q ))$ is equivalent to
The negation of the statement
''If I become a teacher, then I will open a school'', is
The statement $p → (p \leftrightarrow q)$ is logically equivalent to :-
$(\sim (\sim p)) \wedge q$ is equal to .........
The statement $[(p \wedge q) \rightarrow p] \rightarrow (q \wedge \sim q)$ is