The statement $p → (p \leftrightarrow  q)$ is logically equivalent to :-

  • A

    $(p → q) \vee  (q → p)$

  • B

    $(p → q) \wedge (q →p)$

  • C

    $(q→ p) → (p → q)$

  • D

     $(q → p) \leftrightarrow (p →q)$

Similar Questions

Let the operations $*, \odot \in\{\wedge, \vee\}$. If $( p * q ) \odot( p \odot \sim q )$ is a tautology, then the ordered pair $(*, \odot)$ is.

  • [JEE MAIN 2022]

If $p, q, r$ are simple propositions, then $(p \wedge q) \wedge (q \wedge r)$ is true then

If $p$ : It rains today, $q$ : I go to school, $r$ : I shall meet any friends and $s$ : I shall go for a movie, then which of the following is the proposition : If it does not rain or if I do not go to school, then I shall meet my friend and go for a movie.

If the truth value of the statement $p \to \left( { \sim q \vee r} \right)$ is false $(F)$, then the truth values of the statement $p, q, r$ are respectively

  • [JEE MAIN 2019]

Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

  • [JEE MAIN 2013]