${({x^2} - x - 1)^{99}}$ के गुणांकों का योग है
$1$
$0$
$-1$
इनमें से कोई नहीं
${(x + 3)^{n - 1}} + {(x + 3)^{n - 2}}(x + 2)$$ + {(x + 3)^{n - 3}}{(x + 2)^2} + ... + {(x + 2)^{n - 1}}$ के विस्तार में ${x^r}[0 \le r \le (n - 1)]$ का गुणांक है
$x$ की घातों में $\left(1+x+x^{2}+x^{3}\right)^{6}$ के प्रसार में $x^{4}$ का गुणांक है .............
${C_0} - {C_1} + {C_2} - {C_3} + ..... + {( - 1)^n}{C_n}$ बराबर होगा
$\frac{{{C_0}}}{1} + \frac{{{C_1}}}{2} + \frac{{{C_2}}}{3} + .... + \frac{{{C_n}}}{{n + 1}} = $
यदि ${(x - 2y + 3z)^n}$ के विस्तार में $45$ पद हैं, तब $n=$