Verify whether $2$ and $0$ are zeroes of the polynomial $x^{2}-2 x$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let                $p(x)=x^{2}-2 x$

Then             $p(2) = 2^2 -4 = 4 -4 = 0$

and                  $p(0) = 0 -0 = 0$

Hence, $2$ and $0$ are both zeroes of the polynomial $x^2 -2x.$

Let us now list our observations :

$(i)$ A zero of a polynomial need not be $0$.

$(ii)$ $0$ may be a zero of a polynomial.

$(iii)$ Every linear polynomial has one and only one zero.

$(iv)$ A polynomial can have more than one zero.

Similar Questions

Find the degree of the polynomials given  : $x^{5}-x^{4}+3$

Find the zero of the polynomial : $p(x)=a x,\,\, a \neq 0$

Check whether $-2$ and $2$ are zeroes of the polynomial $x + 2$.

Verify whether the following are zeroes of the polynomial, indicated against them.

$p(x)=x^{2}-1, \,x=1,\,-1$

Expand $(4a -2b -3c)^2.$