What are the possible expressions for the dimensions of the cuboids whose volumes are given below ?$\boxed{\rm {Volume}\,:3x^2-12x}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Volume of a cuboid $=($ Length $) \times($ Breadth $) \times($ Height $)$

Volume $=3 x^{2}-12 x$

On factorising $3 x ^{2}-12 x ,$ we have

$3 x ^{2}-12 x =3\left[ x ^{2}-4 x \right]=3 \times[ x ( x -4)]=3 \times x \times( x -4)$

$\therefore$ The possible dimensions of the cuboid are: $3, x$ and $(x-4)$ units.

Similar Questions

Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by $x-a$.

Write the coefficients of $x^2$ in each of the following :

$(i)$ $2+x^{2}+x $

$(ii)$ $2-x^{2}+x^{3}$

Find the zero of the polynomial : $p(x) = 2x + 5$

Factorise : $x^{3}+13 x^{2}+32 x+20$

Find the value of $k,$ if $x-1$ is a factor of $4 x^{3}+3 x^{2}-4 x+k$.