What are the possible expressions for the dimensions of the cuboids whose volumes are given below ?$\boxed{\rm {Volume}\,:3x^2-12x}$
Volume of a cuboid $=($ Length $) \times($ Breadth $) \times($ Height $)$
Volume $=3 x^{2}-12 x$
On factorising $3 x ^{2}-12 x ,$ we have
$3 x ^{2}-12 x =3\left[ x ^{2}-4 x \right]=3 \times[ x ( x -4)]=3 \times x \times( x -4)$
$\therefore$ The possible dimensions of the cuboid are: $3, x$ and $(x-4)$ units.
Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by $x-a$.
Write the coefficients of $x^2$ in each of the following :
$(i)$ $2+x^{2}+x $
$(ii)$ $2-x^{2}+x^{3}$
Find the zero of the polynomial : $p(x) = 2x + 5$
Factorise : $x^{3}+13 x^{2}+32 x+20$
Find the value of $k,$ if $x-1$ is a factor of $4 x^{3}+3 x^{2}-4 x+k$.