माध्यमान प्रमेय सत्यापित कीजिए यदि अंतराल $[a, b]$ में $f(x)=x^{3}-5 x^{2}-3 x,$ जहाँ $a=1$ और $b=3$ है। $f(c)=0$ के लिए $c \in(1,3)$ को ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given function $f$ is $f(x)=x^{2}-5 x^{2}-3 x$

$f,$ being a polynomial function, is continuous in $[1,3],$ and is differentiable in $(1,3)$

Whose derivative is $3 x^{2}-10 x-3$

$f(1)=1^{2}-5 \times 1^{2}-3 \times 1=-7, f(3)=3^{3}-3 \times 3=27$

$\therefore \frac{f(b)-f(a)}{b-a}=\frac{f(3)-f(1)}{3-1}=\frac{-27-(-7)}{3-1}=-10$

Mean Value Theorem states that there exist a point $c \in(1,3)$ such that $f^{\prime}(c)=-10$

$f^{\prime}(c)=-10$

$\Rightarrow 3 c^{2}-10 c-3=10$

$\Rightarrow 3 c^{2}-10 c+7=0$

$\Rightarrow 3 c^{2}-3 c-7 c+7=0$

$\Rightarrow 3 c(c-1)-7(c-1)=0$

$\Rightarrow(c-1)(3 c-7)=0$

$\Rightarrow c=1, \frac{7}{3}$ where $c=\frac{7}{3} \in(1,3)$

Hence, Mean Value Theorem is verified for the given function and $c=\frac{7}{3} \in(1,3)$ is the only point for which $f^{\prime}(c)=0$

Similar Questions

जाँच कीजिए कि क्या रोले का प्रमेय निम्नलिखित फलनों में से किन-किन पर लागू होता है। इन उदाहरणों से क्या आप रोले के प्रमेय के विलोम के बारे में कुछ कह सकते हैं?

$f(x)=[x]$ के लिए $x \in[5,9]$

यदि , अन्तराल $[1,\,2]$ में रौले प्रमेय को संतुष्ट करता है तथा $f(x)$ ,$[1,\,2]$ में सतत् है, तो $\int_1^2 {f'(x)dx} $ का मान है

माना $\mathrm{f}:[2,4] \rightarrow \mathbb{R}$ एक अवकलनीय फलन है, जिसके लिए $\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1$, $x \in[2,4], f(2)=\frac{1}{2}$ तथा $f(4)=\frac{1}{4}$ हैं।

निम्न दो कथनों का विचार कीजिए :

($A$) सभी $\mathrm{x} \in[2,4]$ के लिए $\mathrm{f}(\mathrm{x}) \leq 1$, है।

($B$) सभी $x \in[2,4]$ के लिए $f(x) \geq \frac{1}{8}$ है। तो

  • [JEE MAIN 2023]

यदि फलन $f(x) = a{x^3} + b{x^2} + 11x - 6$ रोले प्रमेय की शतोर्ं को अन्तराल $[1, 3]$ के लिए सन्तुष्ट करता है तथा $f'\left( {2 + \frac{1}{{\sqrt 3 }}} \right) = 0$, तब $a$ और $b$ के मान क्रमश: हैं

फलन $f(x) = {e^x},a = 0,b = 1$ के लिए मध्यमान प्रमेय में  $c$ का मान होगा