फलन $f(x) = {e^x},a = 0,b = 1$ के लिए मध्यमान प्रमेय में $c$ का मान होगा
$log\, x$
$\log (e - 1)$
$0$
$1$
उन बिंदुओं, जहाँ वक्र $\mathrm{y}=\mathrm{x}^5-20 \mathrm{x}^3+50 \mathrm{x}+2$, $\mathrm{x}$-अक्ष को काटता है, की संख्या है____________
यदि फलनों $f(x)=\frac{x^3}{3}+2 b x+\frac{a x^2}{2}$ तथा $g(x)=\frac{x^3}{3}+a x+b x^2, a \neq 2 b$ का एक उभयानिष्ठ चरम बिन्दु है, तब $a+2 b+7$ बराबर है :
यदि $f ^{\prime} G \left(\frac{4}{3}\right)=0$, के साथ फलन $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ के लिए रोले का प्रमेय लागू होता है, तो क्रमित युग्म $( a , b )$ बराबर है
माना $f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2}\ln x,\,x > 0} \\
{0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0}
\end{array}} \right\}$, तब $x \in [0,1]$ के लिए $ f$ पर रोले की प्रमेय मान्य है, यदि $\alpha = $
यदि $c$ एक बिंदु है जिस पर, अंतराल $[3,4]$ में, फलन $f( x )=\log _{ e }\left(\frac{ x ^{2}+\alpha}{7 x }\right)$ पर रोले प्रमेय लागू होता है, जहाँ $\alpha$ $\in R$ है, तो $f^{\prime \prime}( c )$ बराबर है