इकाइयों की दो पद्धतियों $1$ व $2$ में वेग $(v)$ तथा त्वरण $(a)$ क्रमश: $v _2=\frac{ n }{ m ^2} v _1$ एवं $a _2=\frac{ a _1}{ mn }$ के अनुसार संबंधित है। यहाँ $m$ तथा $n$ नियतांक हैं तो दूरी तथा समय हेतु दोनों पद्धतियों में क्रमश: संबंध है

  • [JEE MAIN 2022]
  • A
    $\frac{ n ^{3}}{ m ^{3}} L _{1}= L _{2}$ तथा $\frac{ n ^{2}}{ m } T _{1}= T _{2}$
  • B
    $L_{1}=\frac{n^{4}}{m^{2}} L_{2}$ तथा $T_{1}=\frac{n^{2}}{m} T_{2}$
  • C
    $L _{1}=\frac{ n ^{2}}{ m } L _{2}$ तथा $T _{1}=\frac{ n ^{4}}{ m ^{2}} T _{2}$
  • D
    $\frac{ n ^{2}}{ m } L _{1}= L _{2}$ तथा $\frac{ n ^{4}}{ m ^{2}} T _{1}= T _{2}$

Similar Questions

किसी दोलनशील द्रव बूंद की आवृत्ति (v); द्रव की त्रिज्या $(r)$, द्रव के घनत्व $(\rho)$ व द्रव के पृष्ठ तनाव (s) पर $v=r^a \rho^b s^c$ के अनुसार निर्भर करती है तो $a$, $\mathrm{b}$ व $\mathrm{c}$ के मान क्रमशः है :-

  • [JEE MAIN 2023]

मुक्त रुप से गिरती हुई वस्तु का वेग ${g^p}{h^q}$ से परिवर्तित होता है, जहाँ $g$ गुरुत्वीय त्वरण तथा $h$ ऊँचाई है, तो $p$ और $q$ के मान होंगें

व्यंजक $P = \frac{\alpha }{\beta }{e^{ - \frac{{\alpha Z}}{{k\theta }}}}$ में $P$ दाब, $ Z$ दूरी, $k$ बोल्ट्जमैन स्थिरांक एवं तापक्रम दर्शाता है तो का विमीय सूत्र होगा

  • [IIT 2004]

तार के कम्पन की आवृत्ति $\nu = \frac{p}{{2l}}{\left[ {\frac{F}{m}} \right]^{1/2}}$ से दी जाती है। यहाँ $p$ तार के लूपों की संख्या एवं l लम्बाई है। $ m$ का विमीय सूत्र होगा

यदि संवेग $[ P ]$, क्षेत्रफल $[ A ]$ एवं समय $[ T ]$ का प्रयोग मूलभूत राशियों की तरह किया जाए, तो श्यानता गुणांक का विमीय सूत्र होगा :

  • [JEE MAIN 2022]