यदि संवेग $[ P ]$, क्षेत्रफल $[ A ]$ एवं समय $[ T ]$ का प्रयोग मूलभूत राशियों की तरह किया जाए, तो श्यानता गुणांक का विमीय सूत्र होगा :
$\left[ PA ^{-1} T ^{0}\right]$
$\left[ PA T ^{-1}\right]$
$\left[ PA ^{-1} T \right]$
$\left[ PA ^{-1} T ^{-1}\right]$
एक अतिभारी ब्लैक होल (black hole), जिसका द्रव्यमान $m$ एवं त्रिज्या $R$ है, $\omega$ कोणीय वेग से चक्रण (spin) कर रहा है । यदि इसके द्वारा गुरूत्वीय तरंग (gravitational waves) के रूप में' विकिरित शक्ति $P$ का मान $P=G c^{-5} m^x R^y \omega^z$ है, जहाँ $c$ एवं $G$ क्रमशः प्रकाश का निर्वात में चाल और सार्वत्रिक गुरूत्वीय नियतांक है, तो
स्तम्भ I |
स्तम्भ II |
---|---|
$(i)$ क्यूरी |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ प्रकाश वर्ष |
$(B)$ $M$ |
$(iii)$ परावैद्युत सामथ्र्य |
$(C)$ विमाहीन |
$(iv)$ परमाणु भार |
$(D)$ $T$ |
$(v)$ डेसीबल |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |
सही मेल का चुनाव कीजिए
यदि $R$ तथा $L$ क्रमश: प्रतिरोध तथा स्वप्रेरकत्व दर्शाते हों, तो निम्न में से किस संयोजन की विमायें आवृत्ति की विमाओं के बराबर होंगी
आइए निम्नलिखित समीकरण पर विचार करे $\frac{1}{2} m v^{2}=m g h$ यहाँ $m$ वस्तु का द्रव्यमान, $v$ इसका वेग है, $g$ गुरुत्वीय त्वरण और $h$ ऊँचाई है। जाँचिए कि क्या यह समीकरण विमीय दृष्टि से सही है।
$m$ द्रव्यमान एवं $r$ त्रिज्या की एक गोलीय वस्तु $\eta $ श्यानता के माध्यम में गिर रही है। वह समय जिसमें वस्तु का वेग शून्य से बढ़कर सीमान्त (टर्मिनल) वेग $v$ का $0.63$ गुना हो जाता है, समय नियतांक $\tau $ कहलाता है। विमीय रुप से $\tau $ को किसके द्वारा व्यक्त कर सकते हैं