Applying the principle of homogeneity of dimensions, determine which one is correct. where $\mathrm{T}$ is time period, $\mathrm{G}$ is gravitational constant, $M$ is mass, $r$ is radius of orbit.
Let $[{\varepsilon _0}]$ denotes the dimensional formula of the permittivity of the vacuum and $[{\mu _0}]$ that of the permeability of the vacuum. If $M = {\rm{mass}}$, $L = {\rm{length}}$, $T = {\rm{Time}}$ and $I = {\rm{electric current}}$, then
Which of the following relation cannot be deduced using dimensional analysis? [the symbols have their usual meanings]
A book with many printing errors contains four different formulas for the displacement $y$ of a particle undergoing a certain periodic motion:
$(a)\;y=a \sin \left(\frac{2 \pi t}{T}\right)$
$(b)\;y=a \sin v t$
$(c)\;y=\left(\frac{a}{T}\right) \sin \frac{t}{a}$
$(d)\;y=(a \sqrt{2})\left(\sin \frac{2 \pi t}{T}+\cos \frac{2 \pi t}{T}\right)$
$(a=$ maximum displacement of the particle, $v=$ speed of the particle. $T=$ time-period of motion). Rule out the wrong formulas on dimensional grounds.