Velocity $(v)$ and acceleration $(a)$ in two systems of units $1$ and $2$ are related as $v _{2}=\frac{ n }{ m ^{2}} v _{1}$ and $a_{2}=\frac{a_{1}}{m n}$ respectively. Here $m$ and $n$ are constants. The relations for distance and time in two systems respectively are

  • [JEE MAIN 2022]
  • A
    $\frac{ n ^{3}}{ m ^{3}} L _{1}= L _{2}$ and $\frac{ n ^{2}}{ m } T _{1}= T _{2}$
  • B
    $L_{1}=\frac{n^{4}}{m^{2}} L_{2}$ and $T_{1}=\frac{n^{2}}{m} T_{2}$
  • C
    $L _{1}=\frac{ n ^{2}}{ m } L _{2}$ and $T _{1}=\frac{ n ^{4}}{ m ^{2}} T _{2}$
  • D
    $\frac{ n ^{2}}{ m } L _{1}= L _{2}$ and $\frac{ n ^{4}}{ m ^{2}} T _{1}= T _{2}$

Similar Questions

Applying the principle of homogeneity of dimensions, determine which one is correct. where $\mathrm{T}$ is time period, $\mathrm{G}$ is gravitational constant, $M$ is mass, $r$ is radius of orbit.

  • [JEE MAIN 2024]

Let $[{\varepsilon _0}]$ denotes the dimensional formula of the permittivity of the vacuum and $[{\mu _0}]$ that of the permeability of the vacuum. If $M = {\rm{mass}}$, $L = {\rm{length}}$, $T = {\rm{Time}}$ and $I = {\rm{electric current}}$, then

  • [IIT 1998]

Which of the following relation cannot be deduced using dimensional analysis? [the symbols have their usual meanings]

A book with many printing errors contains four different formulas for the displacement $y$ of a particle undergoing a certain periodic motion:

$(a)\;y=a \sin \left(\frac{2 \pi t}{T}\right)$

$(b)\;y=a \sin v t$

$(c)\;y=\left(\frac{a}{T}\right) \sin \frac{t}{a}$

$(d)\;y=(a \sqrt{2})\left(\sin \frac{2 \pi t}{T}+\cos \frac{2 \pi t}{T}\right)$

$(a=$ maximum displacement of the particle, $v=$ speed of the particle. $T=$ time-period of motion). Rule out the wrong formulas on dimensional grounds.

Obtain the relation between the units of some physical quantity in two different systems of units. Obtain the relation between the $MKS$ and $CGS$ unit of work.