Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Atleast one of them will not qualify the examination.
Let $E$ and $F$ denote the events that Anil and Ashima will qualify the examination, respectively. Given that
$P(E)=0.05$, $P(F)=0.10$ and $P(E \cap F)=0.02$
Then
$P$ (atleast one of them will not qualify)
$=1- P$ (both of them will qualify)
$=1-0.02=0.98$
A die is loaded in such a way that each odd number is twice as likely to occur as each even number. If $E$ is the event that a number greater than or equal to $4$ occurs on a single toss of the die then $P(E)$ is equal to
The probabilities of three mutually exclusive events are $\frac{2}{3} , \frac{1}{4}$ and $\frac{1}{6}$. The statement is
Two cards are drawn at random and without replacement from a pack of $52$ playing cards. Finds the probability that both the cards are black.
Urn $A$ contains $6$ red and $4$ black balls and urn $B$ contains $4$ red and $6$ black balls. One ball is drawn at random from urn $A$ and placed in urn $B$. Then one ball is drawn at random from urn $B$ and placed in urn $A$. If one ball is now drawn at random from urn $A$, the probability that it is found to be red, is
If $A$ and $B$ are events such that $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ then $P(\bar A \cap B)$ is