The probabilities of three mutually exclusive events are $\frac{2}{3} , \frac{1}{4}$ and $\frac{1}{6}$. The statement is
$1$
Wrong
Could be either
Do not know
If $P\,({A_1} \cup {A_2}) = 1 - P(A_1^c)\,P(A_2^c)$ where $c$ stands for complement, then the events ${A_1}$ and ${A_2}$ are
If $P(A) = 2/3$, $P(B) = 1/2$ and ${\rm{ }}P(A \cup B) = 5/6$ then events $A$ and $B$ are
If $A$ and $B$ are two events, then the probability of the event that at most one of $A, B$ occurs, is
If $P(A) = 0.25,\,\,P(B) = 0.50$ and $P(A \cap B) = 0.14,$ then $P(A \cap \bar B)$ is equal to
From the employees of a company, $5$ persons are selected to represent them in the managing committee of the company. Particulars of five persons are as follows :
S.No. | Name | Sex | Age in years |
$1.$ | Harish | $M$ | $30$ |
$2.$ | Rohan | $M$ | $33$ |
$3.$ | Sheetal | $F$ | $46$ |
$4.$ | Alis | $F$ | $28$ |
$5.$ | Salim | $M$ | $41$ |
A person is selected at random from this group to act as a spokesperson. What is the probability that the spokesperson will be either male or over $35$ years?