Two cards are drawn at random and without replacement from a pack of $52$ playing cards. Finds the probability that both the cards are black.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

There are $26$ black cards in a deck of $52$ cards.

Let $P(A)$ be the probability of getting a black card in the first draw.

$\therefore $ $P(A)=\frac{26}{52}=\frac{1}{2}$

Let $\mathrm{P}(\mathrm{B})$ be the probability of getting a black card on second draw. since the card is not replaced,

$\therefore $ $P(B)=\frac{25}{51}$

Thus, probability of getting both the cards black $=\frac{1}{2} \times \frac{25}{51}=\frac{25}{102}$

Similar Questions

If $A$ and $B$ are two events of a random experiment, $P\,(A) = 0.25$, $P\,(B) = 0.5$ and $P\,(A \cap B) = 0.15,$ then $P\,(A \cap \bar B) = $

If the probability of $X$ to fail in the examination is $0.3$ and that for $Y$ is $0.2$, then the probability that either $X$ or $Y$ fail in the examination is

  • [IIT 1989]

Prove that if $E$ and $F$ are independent events, then so are the events $\mathrm{E}$ and $\mathrm{F}^{\prime}$.

The probabilities of three events $A , B$ and $C$ are given by $P ( A )=0.6, P ( B )=0.4$ and $P ( C )=0.5$ If $P ( A \cup B )=0.8, P ( A \cap C )=0.3, P ( A \cap B \cap$ $C)=0.2, P(B \cap C)=\beta$ and $P(A \cup B \cup C)=\alpha$ where $0.85 \leq \alpha \leq 0.95,$ then $\beta$ lies in the interval

  • [JEE MAIN 2020]

Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that  Atleast one of them will not qualify the examination.