दो समान त्रिज्याओं तथा क्रमश: $ + 10\,\mu C$ व $ - 20\,\mu C$ आवेश वाले दो छोटे गोलीय चालक एक दूसरे से $R$ दूरी पर रखे जाने पर ${F_1}$ बल अनुभव करते हैं। यदि उनके सम्पर्क में लाकर पुन: उसी दूरी तक पृथक कर देते हैं तो वे ${F_2}$ बल अनुभव करते हैं। ${F_1}$ का ${F_2}$ से अनुपात होगा
$1:8$
$-8:1$
$1:2$
$-2:1$
${E_{ckgj}} = \frac{{kQ}}{{{r^2}}}$आवेशों $4Q$, $q$ तथा $Q$ को $x$-अक्ष के अनुदिश क्रमश: $x = 0$, तथा $x = l$ पर रखा जाता है। $q$ का वह मान, ताकि आवेश $Q$ पर लगने वाला बल शून्य हो, होगा
तीन एक समान आवेश प्रत्येक $2\,C$ से आवेशित गेंदो को चित्रानुसार प्रत्येक $2\,m$ लम्बे रेशम के धागों से बांधकर उभयनिप्ट बिन्दु $P$ से लटकाया गया है। तीनों गेंदे $1\,m$ भुजा के समबाहु त्रिभुज का निर्माण करती है।किसी एक आवेशित गेंद पर लग रहे कुल बल तथा किन्ही दो आवेशित गेंदो के बीच के परस्पर बल का अनुपात होगा-
लम्बाई $ a$ के एक वर्ग के चारों कोनों $A,\,B,\,C,\,D$ पर समान आवेश $q$ रखे हैं। $D$ पर रखे हुए आवेश पर लगने वाले बल का परिमाण होगा
दो बिन्दु आवेशों को हवा में एक निश्चित दूरी $r$ पर रखा जाता है। ये एक-दूसरे की ओर $F$ बल लगाते हैं। तब दूरी $r'$ जिस पर ये आवेश परावैद्युत नियतांक $k$ के माध्यम में समान बल लगाते है, है
दो लघु गोले, जिनमें प्रत्येक का द्रव्यमान $10\, mg$ है, $0.5\, m$ लम्बे धागों द्वारा किसी बिन्दु से निलंबित हैं। समान आवेश द्वारा आवेशित करने पर ये एक दुसरे को $0.20\, m$ दूरी तक प्रतिकर्षित करते हैं। प्रत्येक गोले पर आवेश $\frac{ a }{21} \times 10^{-8} \,C$ है। $a$ का मान $......$ होगा। [दिया है : $g =10\, ms ^{-2}$ ]