दो समान त्रिज्याओं तथा क्रमश: $ + 10\,\mu C$ व $ - 20\,\mu C$ आवेश वाले दो छोटे गोलीय चालक एक दूसरे से $R$ दूरी पर रखे जाने पर ${F_1}$ बल अनुभव करते हैं। यदि उनके सम्पर्क में लाकर पुन: उसी दूरी तक पृथक कर देते हैं तो वे ${F_2}$ बल अनुभव करते हैं। ${F_1}$ का ${F_2}$ से अनुपात होगा
$1:8$
$-8:1$
$1:2$
$-2:1$
तीन आवेश ‘$a$’ भुजा वाले समबाहु त्रिभुज के शीर्षों पर रखे हैं। शीर्ष $A$ पर रखे आवेश द्वारा अनुभव किया गया बल $BC$ के लम्बवत् दिशा में होगा
लम्बाई $l$ की दो द्रव्यमानहीन डोरियो द्वारा एक उभयनिष्ठ बिन्दु से दो एकसमान आवेशित गोले लटकाये गये है, जों कि प्रारम्भ में दूरी $d(d$ $ < < l)$ पर अपनें अन्योन्य विकषर्ण के कारण है। दोंनों गोलों से आवेश एक स्थिर दर से लीक होना प्रारम्भ करता है। इसके परिणाम स्वरूप आवेश एक दूसरे की ओर $v$ वेग से गति करना प्रारम्भ करते है। तब दोनों के बीच दूरी $x$ के फलन के रूप में
अनंत बिन्दु आवेशों, जिनमें प्रत्येक पर $1\, \mu \,C$ का आवेश है। को $y$-अक्ष के अनुदिश $y =1 \,m , 2\,m$, $4\, m , 8\, m \ldots$ रखा गया है। मूलबिन्दु पर रखे $1\, C$ बिन्दु आवेश पर लगने वाला कुल बल $x\, \times 10^{3}\, N$ है। यहाँ $x$ का मान निकटतम पूर्णांक $......$ होगा। $\left[\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \,N\,m ^{2} / C ^{2}\right.$ लीजिए । $]$
निम्न चित्र में एकसमान द्रव्यमान $m$ तथा एकसमान आवेश $q$ वाली दो सूक्ष्म चालक गेदें, बराबर $L$ लम्बाई के कुचालक धागों से लटक रही हैं। यदि $\theta $ को बहुत छोटा मानें ताकि $\tan \theta \approx \sin \theta $, तो साम्यावस्था में $x$ का मान है
नियत आवेश से आवेशित दो गोलाकार के मध्य के बलों का अनुपात $(a)$ वायु में $(b)$ $K$ परावैद्युतांक माध्यम में होता है