दो समान त्रिज्याओं तथा क्रमश: $ + 10\,\mu C$ व $ - 20\,\mu C$ आवेश वाले दो छोटे गोलीय चालक एक दूसरे से $R$ दूरी पर रखे जाने पर ${F_1}$ बल अनुभव करते हैं। यदि उनके सम्पर्क में लाकर पुन: उसी दूरी तक पृथक कर देते हैं तो वे ${F_2}$ बल अनुभव करते हैं। ${F_1}$ का ${F_2}$ से अनुपात होगा
$1:8$
$-8:1$
$1:2$
$-2:1$
निर्वात् में दो आवेश ${q_1}$, ${q_2}$ दूरी $d$ पर रखे गये हैं और इनके मध्य लगने वाला बल $F$ है। यदि उनके चारों ओर परावैद्युतांक $4$ वाला माध्यम भर दिया जाये तो अब बल का मान होगा
बिन्दु आवेश $ + 4q,\, - q$ एवं $ + 4q$ , $X - $अक्ष के बिन्दुओं $x = 0,\,x = a$ एवं $x = 2a$ पर रखे हैं, तो
दो बिन्दु आवेश $ + 3\,\mu C$ एवं $ + 8\,\mu C$ एक दूसरे को $40\,N$ के बल से प्रतिकर्षित करते हैं। यदि $ - 5\,\mu C$ का आवेश प्रत्येक में और जोड़ दिया जाये तो इनके मध्य लगने वाला बल ........$N$ हो जायेगा
$x-$ अक्ष के बिन्दुओं $x =- a$ तथा $x = a$ में प्रत्येक पर समान आवेश $q$ रखा हैं, तथा इसके केन्द्र पर $m$ द्रव्यमान तथा $q _{0}=\frac{ q }{2}$ आवेश का एक कण रखा हैं। यदि आवेश $q_0$ को $y-$ अक्ष के अनुदिश अल्प दूरी $( y << a )$ विस्थापित किया जाए, तो कण पर लगने वाला परिणामी बल समानुपाती होगा,
दो समरूप चालक गोलों $A$ व $B$ पर समान आवेश हैं। प्रारम्भ में उनके बीच की दूरी उनके व्यासों से बहुत अधिक है तथा उनके बीच बल $F$ है। $C$ इसी तरह का एक तीसरा गोला है जो आवेशहीन है। गोले $C$ को पहले $A$ से स्पर्श कराते हैं, फिर $B$ से स्पर्श कराते हैं और फिर हटा देते हैं। इस प्रकार से $A$ और $B$ के बीच बल का मान होगा