दो समान त्रिज्याओं तथा क्रमश: $ + 10\,\mu C$ व $ - 20\,\mu C$ आवेश वाले दो छोटे गोलीय चालक एक दूसरे से $R$ दूरी पर रखे जाने पर ${F_1}$ बल अनुभव करते हैं। यदि उनके सम्पर्क में लाकर पुन: उसी दूरी तक पृथक कर देते हैं तो वे ${F_2}$ बल अनुभव करते हैं।  ${F_1}$ का ${F_2}$ से अनुपात होगा

  • A

    $1:8$

  • B

    $-8:1$

  • C

    $1:2$

  • D

    $-2:1$

Similar Questions

दो ताँबे की गेंदें, प्रत्येक का भार $10\, gm$ है। एक दूसरे से वायु में $10\,cm$ दूर रखी हैं। यदि प्रत्येक ${10^6}$ परमाणुओं से एक इलेक्ट्रॉन एक गेंद से दूसरी गेंद की ओर स्थानान्तरित होता है। इनके मध्य कूलॉम बल है। (ताँबे का परमाणु भार $63.5$ है)

नियत आवेश से आवेशित दो गोलाकार के मध्य के बलों का अनुपात $(a)$ वायु में $(b)$ $K$ परावैद्युतांक माध्यम में होता है

$0.4 \mu C$ आवेश के किसी छोटे गोले पर किसी अन्य छोटे आवेशित गोले के कारण वायु में $0.2\, N$ बल लगता है। यदि दूसरे गोले पर $0.8\, \mu C$ आवेश हो तो $(a)$ दोनों गोलों के बीच कितनी दूरी है? $(b)$ दूसरे गोले पर पहले गोले के कारण कितना बल लगता है?

दो लघु गोले, जिनमें प्रत्येक का द्रव्यमान $10\, mg$ है, $0.5\, m$ लम्बे धागों द्वारा किसी बिन्दु से निलंबित हैं। समान आवेश द्वारा आवेशित करने पर ये एक दुसरे को $0.20\, m$ दूरी तक प्रतिकर्षित करते हैं। प्रत्येक गोले पर आवेश $\frac{ a }{21} \times 10^{-8} \,C$ है। $a$ का मान $......$ होगा। [दिया है : $g =10\, ms ^{-2}$ ]

  • [JEE MAIN 2021]

दो एकसमान धनावेश $Q$, एक दूसरे से ' $2\,a$ ' दूरी पर स्थिर किए गए हैं। दोनों स्थिर आवेशों के मध्य बिन्दु पर, किसी अन्य ' $m$ ' द्रव्यमान के आवेश $q _0$ को रखा जाता है। दोनों स्थिर आवेशों को जोड़ने वाली रेखा के अनुदिश एक लघु विस्थापन के कारण आवेश $q _0$ सरल आवर्त गति करने लगता है। आवेश $q _0$ के दोलनों का आवर्तकाल होगा :

  • [JEE MAIN 2022]