Two small conducting spheres of equal radius have charges $ + 10\,\mu C$ and $ - 20\,\mu C$ respectively and placed at a distance $R$ from each other experience force ${F_1}$. If they are brought in contact and separated to the same distance, they experience force ${F_2}$. The ratio of ${F_1}$ to ${F_2}$ is
$1:8$
$-8:1$
$1:2$
$-2:1$
The diagrams depict four different charge distributions. All the charged particles are at same distance from origin $(i.e. OA = OB = OC = OD)$ $F_1$ , $F_2$ , $F_3$ and $F_4$ are the magnitude of electrostatic force experienced by a point charge $q_0$ kept at origin in figure $-1$ , figure $-2$ , figure $-3$ and figure $-4$ respectively. Choose the correct statement.
Two equal positive point charges are separated by a distance $2 a$. The distance of a point from the centre of the line joining two charges on the equatorial line (perpendicular bisector) at which force experienced by a test charge $q_0$ becomes maximum is $\frac{a}{\sqrt{x}}$. The value of $x$ is $................$
Three point charges are placed at the corners of an equilateral triangle. Assuming only electrostatic forces are acting
Two point charges placed at a certain distance $r$ in air exert a force $F$ on each other. Then the distance $r'$ at which these charges will exert the same force in a medium of dielectric constant $k$ is given by
Four point charges $q_{A}=2\; \mu C, q_{B}=-5\; \mu C,$ $q_{C}=2\; \mu C,$ and $q_{D}=-5\;\mu C$ are located at the corners of a square $ABCD$ of side $10\; cm .$ What is the force on a charge of $1 \;\mu C$ placed at the centre of the square?