दो बिन्दु आवेश $-q$ एवं $+q/2$ क्रमश: मूल बिन्दु एवं बिन्दु $(a, 0, 0)$ पर रखे हैं। $X$ - अक्ष पर किस बिन्दु पर विद्युत क्षेत्र शून्य होगा
$x = \frac{a}{{\sqrt 2 }}$
$x = \sqrt 2 a$
$x = \frac{{\sqrt 2 a}}{{\sqrt 2 - 1}}$
$x = \frac{{\sqrt 2 a}}{{\sqrt 2 + 1}}$
किसी सपाट वृत्तीय चकती पर आवेश $ + Q$ एकसमान वितरित है। आवेश$ + q$ को $E$ गतिज ऊर्जा से चकती की ओर, इसके लम्बवत् अक्ष के अनुदिश फेंका जाता है। आवेश $q$
$5$ नेनोकूलॉम (परिमाण) के अनन्त संख्या में आवेश $X$-अक्ष के अनुदिश $x = 1$सेमी, $x = 2$ सेमी, $x = 4$ सेमी $x = 8$ सेमी. ………. पर रखे गये हैं। इस व्यवस्था में यदि दो क्रमागत आवेश विपरीत प्रकृति के हों तो $x = 0$ पर न्यूटन कूलॉम में विद्युत क्षेत्र होगा $\left( {\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {{10}^9}\,N - {m^2}/{c^2}} \right)$
$a$ भुजा वाले एक समबाहु त्रिभुज के दो कोनों पर दो आवेश प्रत्येक $\eta q({\eta ^{ - 1}} < \sqrt 3 )$ रखें हैं। तीसरे कोने पर विद्युत क्षेत्र ${E_3}$ है। तो क्या सही है $({E_0} = q/4\pi {\varepsilon _0}{a^2})$
$L (=20 cm )$ लम्बाई के एक तार को एक अर्ध वृत्ताकार चाप के रूप में मोड़ दिया गया है। यदि इस चाप के दो समान भागों को $\pm Q$ आवेश से एकसमान आवेशित कर दिया जाय $\left[| Q |=10^{3} \varepsilon_{0}\right.$ कूलॉम जहाँ $\varepsilon_{0}$ ($SI$ मात्रक में) मुक्त आकाश की विद्युतशीलता (परावैद्युतांक) है ], तो, अर्धवृत्ताकार चाप के केन्द्र $O$ पर नेट विद्युत क्षेत्र होगा :
भुजा $a$ वाले एक वर्ग के कोनों पर तीन आवेश $q / 2$, $q$ और $q / 2$ चित्रानुसार रखे हैं। वर्ग के कोने $D$ पर विद्युत क्षेत्र $(E)$ का परिमाण होगा