$R$ एवं $2 R$ त्रिज्याओं वाले दो विलगित ठोस धात्विक गोलो को इस प्रकार आवेशित किया जाता है, कि दोनों का आवेश घनत्व $\sigma$ है। इसकें बाद गोलो को किसी पतले चालक तार द्वारा जोड़ा जाता है। माना बड़े गोले पर नया आवेश घनत्व $\sigma^{\prime}$ है, तो अनुपात $\frac{\sigma^{\prime}}{\sigma}$ होगा :

  • [JEE MAIN 2023]
  • A

    $\frac{9}{4}$

  • B

    $\frac{4}{3}$

  • C

    $\frac{5}{3}$

  • D

    $\frac{5}{6}$

Similar Questions

आंतरिक त्रिज्या $r_{1}$ तथा बाह्य त्रिज्या $r_{2}$ वाले एक गोलीय चालक खोल ( कोश ) पर $Q$ आवेश है।

$(a)$ खोल के केंद्र पर एक आवेश $q$ रखा जाता है। खोल के भीतरी और बाहरी पृष्ठों पर पृष्ठ आवेश घनत्व क्या है?

$(b)$ क्या किसी कोटर ( जो आवेश विहीन है ) में विध्यूत क्षेत्र शून्य होता है, चाहे खोल गोलीय न होकर किसी भी अनियमित आकार का हो? स्पष्ट कीजिए।

एकसमान पृष्ठ आवेश घनत्व $\sigma $ वाले चालक पृष्ठ के निकट वैद्युत क्षेत्र

चित्र में दर्शाए अनुसार एक धनात्मक आवेश $q$ को एक अनावेशित खोखले बेलनाकार चालक कोश (neutral hollow cylindrical conducting shell) के केंद्र पर रखा गया है । निम्नांकित में से कौन-सा चित्र बेलन की सतहों पर प्रेरित आवेशों को सही निरूपित करता है। (बेलन के किलारों के प्रभाव को अनदेखा कीजिए)

  • [KVPY 2017]

प्रत्येक त्रिज्या $0.02\,m$ तथा प्रत्येक $5\,\mu C$ आवेशवाही चौसठ चालक बून्दे, संयोजित होकर एक बड़ी बून्द का निर्माण करती है। बड़ी बूँद के सतही घनत्व तथा छोटी बूँद के सतही घनत्व का अनुपात होगा-

  • [JEE MAIN 2022]

$(a)$ किसी चालक $A$ जिसमें चित्र $(a)$ में दर्शाए अनुसार कोई कोटर / गुहा (Cavity) है, को $Q$ आवेश दिया गया है। यह दर्शाइए कि समस्त आवेश चालक के बाह्य पुष्ठ पर प्रतीत होना चाहिए।

$(b)$ कोई अन्य चालक $B$ जिस पर आवेश $q$ है, को कोटर / गुहा (Cavity) में इस प्रकार धँसा दिया जाता है कि चालक $B$ चालक $A$ से  विध्युतरोधी रहे। यह दर्शाइए कि चालक $A$ के बाह्य पृष्ठ पर कुल आवेश $Q+q$ है [ चित्र $(b)$]।

$(c)$ किसी सुग्राही उपकरण को उसके पर्यावरण के प्रबल स्थिर वैध्यूत क्षेत्रों से परिरिक्षित किया जाना है। संभावित उपाय लिखिए।