નીચે આપેલી આકૃતિમાં આવૃત્તિનો ગુણોત્તર કેટલો થાય?
$2 : 1$
$1 : 1$
$1 : 2$
$4 : 1$
$10\, N$ ના બળ દ્વારા એક સ્પ્રિંગને $5\, cm$ જેટલી ખેંચવામાં આવે છે. જ્યારે $2\, kg$ નું દળ લટકાવવામાં આવે તો દોલનોનો આવર્તકાળ $.....\,s$ છે.
$K$ બળઅચળાંક ધરાવતી સ્પ્રિંગના બે સમાન ટુકડા કરવાથી એક ટુકડાનો બળ અચળાંક શોધો
આકૃતિમાં બતાવ્યા પ્રમાણે $k$ સ્પ્રિંગ-અચળાંક ધરાવતી બે સમાન સ્પ્રિંગો $m$ દ્રવ્યમાન ના બ્લૉક સાથે અને સ્થિર આધાર સાથે જોડાયેલ છે. બતાવો કે જ્યારે આ દ્રવ્યમાન તેની સંતુલન સ્થિતિથી કોઈ પણ બાજુ સ્થાનાંતરિત (વિસ્થાપિત) થાય, ત્યારે તે એક સરળ આવર્તગતિ કરે છે. આ દોલનોનો આવર્તકાળ શોધો.
$\mathrm{m}$ દળને અવગણ્ય દળ ધરાવતી સ્પ્રિંગ સાથે લટકાવવામાં આવે છે અને આ તંત્ર $f_1$ આવૃત્તિ થી દોલનો કરે છે. જો $9 \mathrm{~m}$ ના દળને આ જ સ્પ્રિંગ પર લટકાવતા દોલનોની આવૃત્તિ $f_2$ થાય છે.______$\frac{f_1}{f_2}$ નું મૂલ્ય હશે.
$K$ બળ અચળાંક ધરાવતી સ્પ્રિંગ પર એક પદાર્થ આકૃતિમાં દર્શાવ્યા મુજબ છે. તેની ગતિનું સમીકરણ $x(t)= A sin \omega t+ Bcos\omega t$, જ્યાં $\omega=\sqrt{\frac{K}{m}}$ છે. $t=0$ સમયે દળનું સ્થાન $x(0)$ અને વેગ $v(0)$ હોય, તો સ્થાનાંતરને $x(t)=C \cos (\omega t-\phi)$ મુજબ આપવામાં આવે છે, જ્યાં $C$ અને $\phi$ કેટલા હશે?