दो घटनाओं $A$ और $B$ को परस्पर स्वतंत्र कहते हैं, यदि
$A$ और $B$ परस्पर अपवर्जी हैं
$P\left(A^{\prime} B^{\prime}\right)=[1-P(A)][1-P(B)]$
$P(A)=P(B)$
$P(A)+P(B)=1$
यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A \cup B) = \frac{5}{6}$,$P\,(A \cap B) = \frac{1}{3}$ तथा $P\,(\bar B) = \frac{1}{3},$ तो $P\,(A) = $
माना स्वतंत्र घटनाओं $A$ तथा $B$ के लिए $P ( A )= p$ तथा $P ( B )=2 p$ हैं। तो $p$ का अधिकतम मान, जिसके लिए $P ( A$ तथा $B$ में से ठीक एक घटित होती है $)=\frac{5}{9}$ है
तीन जहाज $A, B$ व $C$ इग्लैंड से भारत आते हैं। यदि उनके सुरक्षित आने के अनुपात क्रमश: $2 : 5, 3 : 7$ व $6 : 11$ हैं तो सभी जहाजों के सुरक्षित आने की प्रायिकता है
निम्नलिखित सारणी में खाली स्थान भरिए
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.5$ | $0.35$ | ......... | $0.7$ |
घटनाओं $A$ तथा $B$ में से कम से कम एक घटना के घटित होने की प्रायिकता $3/5$ है। यदि $A$ तथा $B$ के एक साथ होने की प्रायिकता $1/5$ है, तब $P(A') + P(B')$ का मान है