वृत्त $S = 0$ व रेखा $P = 0$ के प्रतिच्छेद बिन्दु से गुजरने वाले वृत्त का समीकरण है
$S + \lambda P = 0$
$S - \lambda P = 0$
$\lambda S + P = 0$
All of these
यदि एक चर रेखा $3 x+4 y-\lambda=0$ इस प्रकार है कि दो वृत्त $x ^{2}+ y ^{2}-2 x -2 y +1=0$ तथा $x ^{2}+ y ^{2}-18 x -2 y +78=0$ इसके दोनों ओर (opposite sides) हैं, तो $\lambda$ के सभी मानों का समुच्चय निम्न में से कौनसा अन्तराल है
उस वृत्त का समीकरण जो वृत्तों ${x^2} + {y^2} - 6x + 8 = 0$ व ${x^2} + {y^2} = 6$ के प्रतिच्छेद बिन्दुओं तथा बिन्दु $(1, 1)$ से जाता है, है
बिन्दु $(a, b)$ से जाने वाले वृत्त के केन्द्र का बिन्दुपथ जो वृत्त ${x^2} + {y^2} = {p^2}$ को समकोण पर काटता है, है
त्रिज्या $2$ का एक वृत्त ${C_1}$ $x$ - अक्ष और $y$ - अक्ष दोनों को स्पर्श करता है। दूसरा वृत्त ${C_2}$ जिसकी त्रिज्या $2$ से अधिक है, वृत्त ${C_1}$ व दोनों अक्षों को स्पर्श करता है। वृत्त ${C_2}$ की त्रिज्या होगी[
$\lambda $ का वह मान जिसके लिये वृत्त ${x^2} + {y^2} + 2\lambda x + 6y + 1 = 0$ व ${x^2} + {y^2} + 4x + 2y = 0$ लम्बवत् प्रतिच्छेदित करते हैं, है