$\mathrm{R}_{1}$ तथा $\mathrm{R}_{2}$ त्रिज्या के दो आवेशित गोलीय चालक एक तार से जोड़ दिए जाते हैं। गोलों के पृष्ठ आवेश घनत्वों $\left(\sigma_{1} / \sigma_{2}\right)$ का अनुपात होता है :
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$
$\frac{R_{2}}{R_{1}}$
$\sqrt{\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)}$
$\frac{\mathrm{R}_{1}^{2}}{\mathrm{R}_{2}^{2}}$
मान लीजिये एक आवेश रहित एवं सुचालक खोखला गोला है, जिसकी आंतरिक त्रिज्या $r$ एवं बाहरी त्रिज्या $2 r$ है । अब एक बिंदु आवेश $+Q$ को केंद्र से $r / 2$ दूरी पर गोले में रखा जाता है। और गोले की बाहरी सतह को भूसंकित (earthed) कर दिया जाता है। $P$ एक बाहरी बिन्दु है जो कि बिन्दु आवेश $+Q$ और केंद्र को जोड़नेवाली रेखा पर, बिन्दु आवेश $+Q$ से $2 r$ दूरी पर स्थित है, जैसा कि चित्र में दिखाया गया है । एक परीक्षण आवेश $+q$, जो $P$ पर स्थित है, पर लगने वाले बल का मान होगा:
किसी चालक के पृष्ठ पर प्रति इकाई क्षेत्रफल आवेश $q$ है तो पृष्ठ के किसी बिन्दु पर विद्युत क्षेत्र की तीव्रता होगी
प्रत्येक त्रिज्या $0.02\,m$ तथा प्रत्येक $5\,\mu C$ आवेशवाही चौसठ चालक बून्दे, संयोजित होकर एक बड़ी बून्द का निर्माण करती है। बड़ी बूँद के सतही घनत्व तथा छोटी बूँद के सतही घनत्व का अनुपात होगा-
$10\, cm$ त्रिज्या वाले एक चालक गोले को $10\,\mu \,C$ आवेश दिया गया है। $20\, cm$ त्रिज्या वाले अनावेशित दूसरे गोले को इससे स्पर्श कराते हैं। कुछ समय पश्चात् यदि गोलों को अलग-अलग कर दिया जाये तब गोलों पर पृष्ठ आवेश घनत्वों का अनुपात होगा
बिन्दु $P$ पर रखे बिन्दु आवेश के कारण उत्पन विद्युत क्षेत्र में एक खोखला गोलीय चालक चित्रानुसार रखा गया है। यदि ${V_A},{V_B},$ तथा ${V_C}$ क्रमश: बिन्दुओं $A,B$ व $C$ पर विभव हो तो