$10\, cm$ त्रिज्या वाले एक चालक गोले को $10\,\mu \,C$ आवेश दिया गया है। $20\, cm$ त्रिज्या वाले अनावेशित दूसरे गोले को इससे स्पर्श कराते हैं। कुछ समय पश्चात् यदि गोलों को अलग-अलग कर दिया जाये तब गोलों पर पृष्ठ आवेश घनत्वों का अनुपात होगा
$1:4$
$1:3$
$2:1$
$1:1$
प्रत्येक त्रिज्या $0.02\,m$ तथा प्रत्येक $5\,\mu C$ आवेशवाही चौसठ चालक बून्दे, संयोजित होकर एक बड़ी बून्द का निर्माण करती है। बड़ी बूँद के सतही घनत्व तथा छोटी बूँद के सतही घनत्व का अनुपात होगा-
एक $a$ त्रिज्या वाले ठोस गोलीय चालक पर कुल घनावेश $2Q$ है। एक गोलीय चालक कोश जिसकी आन्तरिक त्रिज्या $b$ तथा बाहरी त्रिज्या $c$ है, पर कुल आवेश $ - Q$ है। यह ठोस गोले के साथ संकेन्द्रीय रखा है। गोलीय कोश के आन्तरिक तथा बाह्य पृष्ठों पर पृष्ठीय ओवश घनत्व होंगे
$5\, cm$ एवं $10\, cm$ त्रिज्यायों वाले दो चालक गोले हैं। इनमें से प्रत्येक को का आवेश देकर इनको एक चालक तार द्वारा जोड़ दिया जाता है। जोड़ने के पश्चात् छोटे गोले पर आवेश ......$\mu C$ होगा
यदि धातु के ठोस गोले को कुछ आवेश दिया जाता है तो, धातु के अन्दर विद्युत् क्षेत्र शून्य होता है। गॉस (Gauss) के नियम के तहत, आवेश गोले के सतह पर ही स्थित रहता हैं | अब यदि यह मान लें कि दो आवेशों के बीच का कूलाम्बिक बल (Coulomb's force) $1 / r^3$ के हिसाब से बदलता है, तब आवेशित धातु के गोले के अन्दर
चार धात्विक चालकों की निम्न आकृतियाँ हैं
$1.$ गोला $2.$ बेलन
$3.$ नाशपाती आकार $3.$ तड़ित चालक
यदि इन्हें एक कुचालक आधार पर रखकर आवेशित किया जाये तो किस पर लम्बे समय तक आवेश रहेगा