Prove that if $E$ and $F$ are independent events, then so are the events $\mathrm{E}$ and $\mathrm{F}^{\prime}$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since $\mathrm{E}$ and $\mathrm{F}$ are independent, we have

$\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$       ......... $(1)$

From the venn diagram in Fig it is clear that $E \cap \mathrm{F}$ and $\mathrm{E} \cap \mathrm{F}^{\prime}$ are mutually exclusive events and also $\mathrm{E}=(\mathrm{E} \cap \mathrm{F}) \cup\left(\mathrm{E} \cap \mathrm{F}^{\prime}\right)$

Therefore        $\quad P(E)=P(E \cap F)+P\left(E \cap F^{\prime}\right)$

or                   $P\left(E \cap F^{\prime}\right)=P(E)-P(E \cap F)$

                    $=\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$    (by $(1))$

                   $=\mathrm{P}(\mathrm{E})(1-\mathrm{P}(\mathrm{F}))$

                   $=\mathrm{P}(\mathrm{E})$ . $\mathrm{P}\left(\mathrm{F}^{\prime}\right)$

Hence, $\mathrm{E}$ and $\mathrm{F}^{\prime}$ are independent

863-s41

Similar Questions

In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student has opted neither $NCC$ nor $NSS$.

Two aeroplanes $I$ and $II$ bomb a target in succession. The probabilities of $l$ and $II$ scoring a hit correctlyare $0.3$ and $0.2,$ respectively. The second plane will bomb only if the first misses the target. The probability that the target is hit by the second plane is

  • [AIEEE 2007]

If $P(A \cup B) = 0.8$ and $P(A \cap B) = 0.3,$ then $P(\bar A) + P(\bar B) = $

Let two fair six-faced dice $A$ and $B$ be thrown simultaneously. If  $E_1$ is the event that die $A$ shows up four, $E_2 $ is the event that die $B$ shows up two and $E_3$ is the event that the sum of numbers on both dice is odd, then which of the following statements is NOT true $?$

  • [JEE MAIN 2016]

If $A$ and $B$ are two events such that $P(A) = 0.4$ , $P\,(A + B) = 0.7$ and $P\,(AB) = 0.2,$ then $P\,(B) = $