Prove that if $E$ and $F$ are independent events, then so are the events $\mathrm{E}$ and $\mathrm{F}^{\prime}$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since $\mathrm{E}$ and $\mathrm{F}$ are independent, we have

$\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$       ......... $(1)$

From the venn diagram in Fig it is clear that $E \cap \mathrm{F}$ and $\mathrm{E} \cap \mathrm{F}^{\prime}$ are mutually exclusive events and also $\mathrm{E}=(\mathrm{E} \cap \mathrm{F}) \cup\left(\mathrm{E} \cap \mathrm{F}^{\prime}\right)$

Therefore        $\quad P(E)=P(E \cap F)+P\left(E \cap F^{\prime}\right)$

or                   $P\left(E \cap F^{\prime}\right)=P(E)-P(E \cap F)$

                    $=\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$    (by $(1))$

                   $=\mathrm{P}(\mathrm{E})(1-\mathrm{P}(\mathrm{F}))$

                   $=\mathrm{P}(\mathrm{E})$ . $\mathrm{P}\left(\mathrm{F}^{\prime}\right)$

Hence, $\mathrm{E}$ and $\mathrm{F}^{\prime}$ are independent

863-s41

Similar Questions

Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Only one of them will qualify the examination.

In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student has opted neither $NCC$ nor $NSS$.

If $A$ and $B$ are two independent events, then the probability of occurrence of at least one of $\mathrm{A}$ and $\mathrm{B}$ is given by $1 -\mathrm{P}\left(\mathrm{A}^{\prime}\right) \mathrm{P}\left(\mathrm{B}^{\prime}\right)$

Let $A$ and $B $ be two events such that  $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ and $P\left( {\bar A} \right) = \frac{1}{4}$ where $\bar A$ stands for the complement of the event $A$. Then the events $A$ and$B$ are

  • [JEE MAIN 2014]

Fill in the blanks in following table :

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$0.35$  ........... $0.25$  $0.6$