$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find  $P \left( A ^{\prime} \cap B ^{\prime}\right)$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $P ( A )=0.54$,  $P ( B )=0.69$,  $P (A \cap B)=0.35$

$A^{\prime} \cap B^{\prime}=(A \cup B)^{\prime}$         [by De Morgan's law]

$\therefore P \left(A^{\prime} \cap B^{\prime}\right)$ $= P (A \cup B)^{\prime}=1- P (A \cup B)=1-0.88=0.12$

Similar Questions

If $E$ and $F$ are events such that $P(E)=\frac{1}{4}$,  $P(F)=\frac{1}{2}$ and $P(E$ and $F )=\frac{1}{8},$ find $:$ $P($ not $E$ and not $F)$.

If ${A_1},\,{A_2},...{A_n}$ are any $n$ events, then

If $P(A) = 2/3$, $P(B) = 1/2$ and ${\rm{ }}P(A \cup B) = 5/6$ then events $A$ and $B$ are

Three ships $A, B$ and $C$ sail from England to India. If the ratio of their arriving safely are $2 : 5, 3 : 7$ and $6 : 11$ respectively then the probability of all the ships for arriving safely is

Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that both balls are red.