एक स्प्रिंग दोलक की आवृत्ति दोगुनी करने के लिए हमें

  • A

    द्रव्यमान को एक चौथाई करना होगा

  • B

    द्रव्यमान को चार गुना करना होगा

  • C

    द्रव्यमान को दोगुना करना होगा

  • D

    द्रव्यमान को आधा करना होगा

Similar Questions

किसी कमानी से लटका एक पिण्ड एक क्षैतिज तल में कोणीय वेग $\omega$ से घर्षण या अवमंदन रहित दोलन कर सकता है। इसे जब $x_{0}$ दूरी तक खींचते हैं और खींचकर छोड़ देते हैं तो यह संतुलन केन्द्र से समय $t=0$ पर $v_{0}$ वेग से गुजरता है। प्राचल $\omega . x_{0}$ तथा $v_{0}$ के पदों में परिणामी दोलन का आयाम ज्ञात करिये। [संकेत: समीकरण $x=a \cos (\omega t+\theta)$ से प्रारंभ कीजिए। ध्यान रहे कि प्रारंभिक वेग ऋणात्मक है। ]

एक ऊर्ध्व दिशा की कमानी को धरातल पर चित्र के अनुसार स्थायी किया गया है तथा इसके ऊपरी सिरे के पलड़े पर $2.0$ किग्रा द्रव्यमान की वस्तु रखी है। कमानी और पलड़े के भार नगण्य हैं। थोड़ा दबाकर छोड़ देने पर द्रव्यमान सरल आवर्ती गति करता है। कमानी का बल नियतांक $200$ न्यूटन/मी है। आवर्त गति का न्यूनतम आयाम कितना होना चाहिए, जिससे ऊपर रखी वस्तु पलड़े से अलग हो जाये? (मान लो $g =10$ मी/से $^{2})$

  • [AIPMT 2007]

कमानी स्थिरांक $K$ की कमानी से जुडे किसी पिण्ड की गति आरेख में दर्शाए अनुसार है।

गति का समीकरण $x ( t )= A \sin \omega t + B \cos \omega t$ द्वारा दिया गया है, यहाँ $\omega=\sqrt{\frac{ K }{ m }}$ मान लीजिए समय $t =0$ पर, पिण्ड की स्थिति $x (0)$ तथा वेग $v (0)$ है, तब इसका विस्थापन भी, $x ( t )= C \cos (\omega t -\phi)$, द्वारा निरूपित होगा, यहाँ $C$ और $\phi$ है।

  • [JEE MAIN 2021]

चित्रानुसार एक द्रव्यमान $M$ दो स्प्रिंगों $A$ तथा $B$ से चित्रानुसार लटकाया गया है। स्प्रिंगों के बल नियतांक क्रमषः  $K_1$ तथा  $K_2$  हैं। दोनों स्प्रिंगों की लम्बाई में कुल वृद्धि है

समान द्रव्यमान $0.1\, kg$ वाली दो एक सामन गेंदे $A$ तथा $B$ दो एक समान एवं द्रव्यमान विहीन स्प्रिंगों से जुड़ी है। यह ​स्प्रिंग द्रव्यमान निकाय किसी दृढ़, चिकने वृत्तीय एवं क्षैतिज तल में स्थित पाइप में स्थित है जैसा कि दिखाया गया है। दोनों गेंदों के केन्द्र $0.06\, m$ त्रिज्या के वृत्तीय पथ पर घूमते है। प्रत्येक स्प्रिंग की वास्तविक लम्बाई  $0.06\pi\, m$ एवं स्प्रिंग नियतांक $0.1\,N/m$ हैं प्रारम्भ में दोनों गेंदें व्यास $PQ$ के सापेक्ष $\theta  = \pi /6$ रेडियन कोण से विस्थपित की जाती है। मुक्त करने पर गेंद $B$ के दोलनों की आवृत्ति होगी