किसी कमानी से लटका एक पिण्ड एक क्षैतिज तल में कोणीय वेग $\omega$ से घर्षण या अवमंदन रहित दोलन कर सकता है। इसे जब $x_{0}$ दूरी तक खींचते हैं और खींचकर छोड़ देते हैं तो यह संतुलन केन्द्र से समय $t=0$ पर $v_{0}$ वेग से गुजरता है। प्राचल $\omega . x_{0}$ तथा $v_{0}$ के पदों में परिणामी दोलन का आयाम ज्ञात करिये। [संकेत: समीकरण $x=a \cos (\omega t+\theta)$ से प्रारंभ कीजिए। ध्यान रहे कि प्रारंभिक वेग ऋणात्मक है। ]

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The displacement equation for an oscillating mass is given by:

$x=A \cos (\omega t+\theta)$

Where,

$A$ is the amplitude $x$

is the displacement $\theta$

is the phase constant

Velocity, $v=\frac{d x}{d t}=-A \omega \sin (\omega t+\theta)$

At $t=0, x=x_{0}$

$A \cos \theta=x_{0} \ldots(i)$

And, $\frac{d x}{d t}=-v_{0}=A \omega \sin \theta$

$A \sin \theta=\frac{v_{0}}{\omega} \ldots(i i)$

Squaring and adding equations ( $i$ ) and ($ ii $), we get

$A^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=x_{0}^{2}+\left(\frac{v_{0}^{2}}{\omega^{2}}\right)$

$\therefore A=\sqrt{x_{0}^{2}+\left(\frac{v_{0}}{\omega}\right)^{2}}$

Hence, the amplitude of the resulting oscillation is $\sqrt{x_{0}^{2}+\left(\frac{v_{0}}{\omega}\right)^{2}}$

Similar Questions

जब एक स्प्रिंग् पर $0.50$ किग्रा का भार लटकाया जाता है तब उसमें विस्थापन $0.20$ मीटर का हो जाता है। यदि इस स्प्रिंग् पर $0.25$ किग्रा का भार लटकाया जाये तो इसके दोलनों की आवृत्ति.... $\sec$ होगी $(g = 10$ मी/सै$^{2}$)

दो द्रव्यमान $M _{ A }$ तथा $M _{ B }$ को दो तारों, जिनकी लम्बाइयां $L _{ A }$ तथा $L _{ B }$ है, से लटकाने पर सरल आवर्तगतियां करते है। यदि इनकी आवर्तियों में संबंध $f _{ A }=2 f _{ B }$ हो तो

  • [AIPMT 2000]

चार द्रव्यमान रहित स्प्रिंगों के बल नियतांक क्रमश: $2k, 2k, k$ एवं $2k$ हैं। ये चित्रानुसार घर्षण रहित तल पर स्थित एक द्रव्यमान $M$ से जुड़ी है। यदि द्रव्यमान $M$ को क्षैतिज दिशा में विस्थापित कर दिया जाये तब दोलनों का आवर्तकाल होगा

$k$, $2k$, $4k$ and $8k$.... स्प्रिंग नियतांक वाली अनन्त स्प्रिंगों को श्रेणीक्रम में जोड़ा गया है। संयोजन का प्रभावी स्प्रिंग नियतांक होगा

$700g, 500g,$ एवं $400g$ के तीन द्रव्यमान चित्र में दिखाये अनुसार एक स्प्रिंग से संतुलन में लटके हैं यदि $700\,gm$ द्रव्यमान हटा लिया जाये तो यह निकाय $3$ सैकण्ड के दोलनकाल से दोलन करता है $500\, gm$ द्रव्यमान और हटाये जाने पर इसका दोलनकाल ..... $s$ हो जायेगा