तीन सिक्कों को उछाला गया है। मान लें $E$ घटना 'तीन चित या तीन पट प्राप्त होना ' और $F$ घटना 'न्यूनतम दो चित प्राप्त होना' और $G$ घटना 'अधिकतम दो पट प्राप्त होना' को निरूपित करते हैं। युग्म $( E , F ),( E , G )$ और $( F , G )$ में कौन-कौन से स्वतंत्र हैं? कौन-कौन से पराश्रित हैं?
The sample space of the experiment is given by
Clearly $\mathrm{S}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$
$\mathrm{E}=\{\mathrm{HHH}, \mathrm{TTT}\}, \mathrm{F}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
and $\mathrm{G}=\{\mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$
Also $\mathrm{E} \cap \mathrm{F}=\{\mathrm{HHH}\}, \mathrm{E} \cap \mathrm{G}=\{\mathrm{TTT}\}, \mathrm{F} \cap \mathrm{G}=\{\mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
Therefore $\mathrm{P}(\mathrm{E})=\frac{2}{8}=\frac{1}{4}, \mathrm{P}(\mathrm{F})=\frac{4}{8}=\frac{1}{2}, \mathrm{P}(\mathrm{G})=\frac{7}{8}$
and $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{8}, \mathrm{P}(\mathrm{E} \cap \mathrm{G})=\frac{1}{8}, \mathrm{P}(\mathrm{F} \cap \mathrm{G})=\frac{3}{8}$
Also $\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})=\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}, \mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{G})=\frac{1}{4} \times \frac{7}{8}=\frac{7}{32}$
and $\mathrm{P}(\mathrm{F}), \mathrm{P}(\mathrm{G})=\frac{1}{2} \times \frac{7}{8}=\frac{7}{16}$
Thus $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$
$\mathrm{P}(\mathrm{E} \cap \mathrm{G}) \neq \mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{G})$
and $\mathrm{P}(\mathrm{F} \cap \mathrm{G}) \neq \mathrm{P}(\mathrm{F}) \cdot \mathrm{P}(\mathrm{G})$
Hence, the events $(E$ and $F)$ are independent, and the events $(E$ and $G)$ and $(F$ and $G) $ are dependent.
निम्नलिखित सारणी में खाली स्थान भरिए:
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.35$ | ........... | $0.25$ | $0.6$ |
एक पासे पर $1,2,3$ लाल रंग से और $4,5,6$ हरे रंग से लिखे गए हैं। इस पासे को उछाला गया। मान लें $A$ घटना 'संख्या सम है' और $B$ घटना 'संख्या लाल रंग से लिखी गई है', को निरूपित करते हैं। क्या $A$ और $B$ स्वतंत्र हैं?
एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
प्रायिकता ज्ञात कीजिए कि वह न तो हींदी और न ही अंग्रेज़ी का अखबार पढती है।
एक संस्था के कर्मचारियों में से $5$ कर्मचारियों का चयन प्रबंध समिति के लिए किया गया है। पाँच कर्मचारियों का ब्योरा निम्नलिखित है
क्रम. | नाम | लिंग | आयु ( वर्षो में ) |
$1.$ | हरीश | $M$ | $30$ |
$2.$ | रोहन | $M$ | $33$ |
$3.$ | शीतल | $F$ | $46$ |
$4.$ | ऐलिस | $F$ | $28$ |
$5.$ | सलीम | $M$ | $41$ |
इस समूह से प्रवक्ता पद के लिए यादृच्छ्या एक व्यक्ति का चयन किया गया। प्रवक्ता के पुरुष या $35$ वर्ष से अधिक आयु का होने की क्या प्रायिकता है ?
यदि $A, B, C$ कोई तीन घटनायें हैं। यदि $P (S), S$ के घटाने की प्रायिकता है, तो $P\,(A \cap (B \cup C)) = $