$R$ ત્રિજ્યા ધરાવતા ઘન ગોળની વિજભાર ઘનતા $0 \leq r \leq R$ માટે $\rho  = {\rho _0}\left( {1 - \frac{r}{R}} \right)$ મુજબ આપવામાં આવે છે. તો બોલની બહાર વિદ્યુતક્ષેત્ર કેટલું હશે?

  • [JEE MAIN 2018]
  • A

    $\frac{{{\rho _0}{R^3}}}{{{\varepsilon _0}{r^2}}}$

  • B

    $\frac{{{4\rho _0}{R^3}}}{{{3\varepsilon _0}{r^2}}}$

  • C

    $\frac{{{3\rho _0}{R^3}}}{{{4\varepsilon _0}{r^2}}}$

  • D

    $\frac{{{\rho _0}{R^3}}}{{{12\varepsilon _0}{r^2}}}$

Similar Questions

$10\; cm$ ત્રિજ્યાના એક વાહક ગોળા પર અજ્ઞાત વિદ્યુતભાર છે. ગોળાના કેન્દ્રથી $20\; cm$ દૂરના બિંદુએ વિદ્યુતક્ષેત્ર $-1.5 \times 10^{3} \;N / C$ ત્રિજ્યાવર્તી દિશામાં અંદરની તરફ હોય તો ગોળા પરનો કુલ વિદ્યુતભાર કેટલો હશે? 

$\rho (r)\,\, = \,\,{\rho _0}\left( {\frac{5}{4}\, - \,\,\frac{r}{R}} \right)$ એ વિદ્યુતભારની ઘનતા સાથે બદલાતું ગોળીય સંમિત વિદ્યુતભારનું વિતરણ આપે છે. જે $r = R$, અને $\rho (r)\,\, = \,\,0$ માટે $r > R$ જ્યાં $r$ એ ઉગમબિંદુથી અંતર છે. ઉગમબિંદુથી $r$ અંતરે $(r < R)$ વિદ્યુતક્ષેત્ર ....... દ્વારા આપવામાં આવે છે.

પોલા વાહક ગોળાની સપાટી પર $10\,\mu C$ વિધુતભાર આપવામાં આવે છે. જો ત્રિજ્યા $2\, m$ હોય, તો કેન્દ્ર પર વિદ્યુતક્ષેત્ર કેટલા........$\mu \,C{m^{ - 2}}$ થાય?

  • [AIPMT 1998]

$10\, cm$ ત્રિજ્યાનો એક ગોલીય વાહક સમાન રીતે વિતરિત $3.2 \times 10^{-7} \,C$  વિજભાર ધરાવે છે આ ગોળાના કેન્દ્રથી $15 \,cm$ અંતરે રહેલા બિંદુ પર વિદ્યુતક્ષેત્રનું માન શું હશે ?

$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} Nm ^{2} / C ^{2}\right)$

  • [NEET 2020]

વિધુતભારિત પાતળી ગોળીય કવચ વડે મળતું વિધુતક્ષેત્ર, કવચના કેન્દ્રથી કેવી રીતે આધાર રાખે છે તે આકૃતિથી સમજાવો.