એક ત્રિકોણ ના શિરોબિંદુઓ $\mathrm{A}(-1,3), \mathrm{B}(-2,2)$ અને $\mathrm{C}(3,-1)$ છે. ત્રિકોણની બાજુઓને એક એકમ જેટલા અંદરની તરફ સ્થાનાંતર કરીને એક નવો ત્રિકોણ બનાવવામાં આવે છે. તો, ઉગમબિંદુ થી સૌથી નજીક નવા ત્રિકોણની બાજુ નું સમીક૨ણ .......... છે.
$x-y-(2+\sqrt{2})=0$
$-\mathrm{x}+\mathrm{y}-(2-\sqrt{2})=0$
$x+y-(2-\sqrt{2})=0$
$x+y+(2-\sqrt{2})=0$
ધારો કે $PS$ એ શિરોબિંદુઓ $P(2,2) , Q(6,-1) $ અને $R(7,3) $ વાળા ત્રિકોણની મધ્યગા છે. $(1,-1) $ માંથી પસાર થતી તથા $PS $ ને સંમાતર હોય તેવી રેખાનું સમીકરણ . . . . .. . છે.
રેખા $\mathrm{x}=2 \mathrm{y}$ પરના બિંદુઓથી રેખા $\mathrm{x}=\mathrm{y}$ પર દોરવામાં આવેલ લંબના મધ્યબિંદુઓનો બિંદુગણ મેળવો.
જો $\mathrm{A}(-2,-1), \mathrm{B}(1,0), \mathrm{C}(\alpha, \beta)$ અને $\mathrm{D}(\gamma, \delta)$ એ સમાંતરબાજુ ચતુષ્કોણ $A B C D$ ના શિરોબિંદુઓ છે. જો બિંદુ $C$ એ રેખા $2 x-y=5$ ઉપર અને બિંદુ $D$ એ રેખા $3 \mathrm{x}-2 \mathrm{y}=6$, ઉપર છે. તો $|\alpha+\beta+\gamma+\delta|=$__________.
જો રેખાઓ $x-y+1=0$, $x-2 y+3=0$ અને $2 x-5 y+11=0$ નાં છેદબિંદુઓ ત્રિકોણ $A B C$ ની બાજુનાં મધ્યબિંદુઓ છે તો ત્રિકોણ $\mathrm{ABC}$ નું ક્ષેત્રફળ મેળવો.