વિધાન $A$ : જો $A, B, C, D$ એ અર્ધ વર્તુળ કેન્દ્ર $O$ પર ચાર બિંદુઓ એવા છે કે જેથી $|\overrightarrow{{AB}}|=|\overrightarrow{{BC}}|=|\overrightarrow{{CD}}|$ હોય, તો $\overrightarrow{{AB}}+\overrightarrow{{AC}}+\overrightarrow{{AD}}=4 \overrightarrow{{AO}}+\overrightarrow{{OB}}+\overrightarrow{{OC}}$
કારણ $R$ : સદીશ સરવાળાનો બહુકોણનો નિયમ $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{A D}=2 \overrightarrow{A O}$ આપે છે.
ઉપરોક્ત વિધાનોના સંદર્ભમાં, નીચે આપેલા વિકલ્પો પૈકી સૌથી વધારે યોગ્ય જવાબ પસંદ કરો.
બંને $A$ અને $R$ સાચાં છે અને $R$ એ $A$ ની સાચી સમજણ આપે છે.
$A$ સાચું નથી પણ $R$ સાયું છે.
બંને $A$ અને $R$ સાચાં છે પણ $R$ એ $A$ ની સાચી સમજણ આપતું નથી.
$A$ સાયું છે પણ $R$ સાયું નથી.
સદિશ $\vec{A}$ અને $\vec{B}$ એવા છે કે જેથી $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ થાય. બે સદિશ વચ્ચેનો ખૂણો કેટલો હશે?
ક્યાં સદિશને પરિણામી સદિશ $\mathop P\limits^ \to \,\, = \,\,2\hat i\,\, + \;\,7\hat j\,\, - \,\,10\hat k\,\,$ અને $\,\,\mathop Q\limits^ \to \,\, = \,\,\hat i\,\, + \;\,2\hat j\,\, + \;\,3\hat k$ માં ઉમેરવામાં આવે તો તે $X$- અક્ષની દિશામાં એકમ સદિશ આપે.
સમાન મૂલ્યો ધરાવતાં ત્રણ સદિશો સમતોલનમાં હોય,તો તેમની વચ્ચેનો ખૂણો કેટલો હશે?
સદિશ $A$ અને $B$ નો પરિણામી સદિશ,સદિશ $A$ ને લંબ છે,અને તેનું મૂલ્ય $B$ સદિશથી અડધું છે,તો સદિશ $A$ અને $ B$ વચ્ચેનો ખૂણો ....... $^o$ થશે.
બે સદિશોની બાદબાકીનો અર્થ શું કરી શકાય ?