The vector that must be added to the vector $\hat i - 3\hat j + 2\hat k$ and $3\hat i + 6\hat j - 7\hat k$ so that the resultant vector is a unit vector along the $y-$axis is
$4\hat i + 2\hat j + 5\hat k$
$ - 4\hat i - 2\hat j + 5\hat k$
$3\hat i + 4\hat j + 5\hat k$
Null vector
$ABC$ is an equilateral triangle. Length of each side is $a$ and centroid is point $O$. then $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=.......$
If $| A + B |=| A |+| B |$ the angle between $\overrightarrow A $and $\overrightarrow B $ is ....... $^o$
How many minimum number of non-zero vectors in different planes can be added to give zero resultant
The angle between vector $\vec{Q}$ and the resultant of $(2 \overrightarrow{\mathrm{Q}}+2 \overrightarrow{\mathrm{P}})$ and $(2 \overrightarrow{\mathrm{Q}}-2 \overrightarrow{\mathrm{P}})$ is: