The resultant of $\overrightarrow P $ and $\overrightarrow Q $ is perpendicular to $\overrightarrow P $. What is the angle between $\overrightarrow P $ and $\overrightarrow Q $
${\cos ^{ - 1}}(P/Q)$
${\cos ^{ - 1}}( - P/Q)$
${\sin ^{ - 1}}\,(P/Q)$
${\sin ^{ - 1}}\,( - P/Q)$
The vectors $\vec{A}$ and $\vec{B}$ are such that
$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$
The angle between the two vectors is
If the sum of two unit vectors is a unit vector, then magnitude of difference is
A body is at rest under the action of three forces, two of which are ${\vec F_1} = 4\hat i,\,{\vec F_2} = 6\hat j,$ the third force is
Add vectors $\overrightarrow{ A }, \overrightarrow{ B }$ and $\overrightarrow{ C }$ each having magnitude of $50$ unit and inclined to the $X$-axis at angles $45^{\circ}, 135^{\circ}$ and $315^{\circ}$ respectively.