The value of integral $\int_0^1 {\frac{{{x^b} - 1}}{{\log x}}} \,dx$ is
$\log b$
$2\log (b + 1)$
$3\log b$
None of these
The smallest interval $[a,\,\,b]$ such that $\int_0^1 {\frac{{dx}}{{\sqrt {1 + {x^4}} }}} \in [a,\,\,b]$ is given by
$\int\limits_0^1 {(1 + |\sin x|)(a{x^2} + bx + c)dx = \int\limits_0^2 {(1 + |\sin x|)(a{x^2} + bx + c)} } dx$ . So, location of the roots of ${a{x^2} + bx + c}=0$ is
The number of continuous functions $f:[0,1] \rightarrow(-\infty, \infty)$ satisfying the condition $\int \limits_0^1(f(x))^2 dx =2 \int_0^1 f( x ) dx$ is
Suppose $f(x)$ is a differentiable real function such that $f(x) + f'(x) \le 1$ for all $x$ and $f(0)=0$ . The largest possible value of $f(1)$ is
$I=\int \limits_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x$. Then