Suppose $f(x)$ is a differentiable real function such that $f(x) + f'(x) \le 1$ for all $x$ and $f(0)=0$ . The largest possible value of $f(1)$ is
$1$
$e$
$\frac {1}{e}$
$\frac {(e-1)}{e}$
Let $f:[0,1] \rightarrow[0,1]$ be a continuous function such that $x^2+(f(x))^2 \leq 1$ for all $x \in[0,1]$ and $\int_0^1 f(x) d x=\frac{\pi}{4}$ Then, $\int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} \frac{f(x)}{1-x^2} d x$ equals
The number of continuous functions $f :\left[0, \frac{3}{2}\right] \rightarrow(0, \infty)$ satisfying the equation $4 \int \limits_0^{3 / 2} f(x) d x+125 \int \limits_0^{3 / 2} \frac{d x}{\sqrt{f(x)+x^2}}=108$ is
Let $f$ be a continuous function defined on $[0,1]$ such that $\int_0^1 f^2(x) d x=\left(\int_0^1 f(x) d x\right)^2$. Then, the range of $f$
If $\alpha \in (2 , 3) $ then number of solution of the equation $\int\limits_0^\alpha {} \cos (x + \alpha^2)\, dx = \sin \,\alpha$ is :
Let $I_1 = \int\limits_0^{\frac{\pi }{2}} {{e^{ - {x^2}}}\sin (x)dx} $ ; $I_2 = \int\limits_0^{\frac{\pi }{2}} {{e^{ - {x^2}}}dx} $ ; $I_3 = \int\limits_0^{\frac{\pi }{2}} {{e^{ - {x^2}}}(1 + x)\,dx} $
and consider the statements
$I\,:$ $I_1 < I_2$
$II\,:$ $I_2 < I_3$
$III\,:$ $I_1 = I_3$
Which of the following is $(are)$ true?