$I=\int \limits_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x$. Then

  • [JEE MAIN 2022]
  • A

    $\frac{\pi}{2} < I < \frac{3 \pi}{4}$

  • B

    $\frac{\pi}{5} < I < \frac{5 \pi}{12}$

  • C

    $\frac{5 \pi}{12} < I < \frac{\sqrt{2}}{3} \pi$

  • D

    $\frac{3 \pi}{4} < I < \pi$

Similar Questions

If ${I_1} = \int_0^1 {{2^{{x^2}}}dx,\;} {I_2} = \int_0^1 {{2^{{x^3}}}dx} ,\;{I_3} = \int_1^2 {{2^{{x^2}}}dx} $,${I_4} = \int_1^2 {{2^{{x^3}}}dx} $, then

  • [AIEEE 2005]

Let $I = \mathop \smallint \limits_0^1 \frac{{\sin x}}{{\sqrt x }}\;dx$ and $\;J = \mathop \smallint \limits_0^1 \frac{{\cos x}}{{\sqrt x }}\;dx$ Then which one of  the following is true?

  • [AIEEE 2008]

The number of continuous functions $f :\left[0, \frac{3}{2}\right] \rightarrow(0, \infty)$ satisfying the equation $4 \int \limits_0^{3 / 2} f(x) d x+125 \int \limits_0^{3 / 2} \frac{d x}{\sqrt{f(x)+x^2}}=108$ is

  • [KVPY 2021]

Let $I_1 = \int\limits_0^{\frac{\pi }{2}} {{e^{ - {x^2}}}\sin (x)dx} $ ; $I_2 = \int\limits_0^{\frac{\pi }{2}} {{e^{ - {x^2}}}dx} $ ; $I_3 = \int\limits_0^{\frac{\pi }{2}} {{e^{ - {x^2}}}(1 + x)\,dx} $

and consider the statements

$I\,:$ $I_1 < I_2$   

$II\,:$  $I_2 < I_3$ 

$III\,:$  $I_1 = I_3$

Which of the following is $(are)$ true?

If $I$ is the greatest of the definite integrals

${I_1} = \int_0^1 {{e^{ - x}}{{\cos }^2}x\,dx} , \,\, {I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x\,dx$

${I_3} = \int_0^1 {{e^{ - {x^2}}}dx} ,\,\,{I_4} = \int_0^1 {{e^{ - {x^2}/2}}dx} ,$ then