The value of ${\sum\limits_{r = 1}^{19} {\frac{{{}^{20}{C_{r + 1}}\left( { - 1} \right)}}{{{2^{2r + 1}}}}} ^r}$ is

  • A

    $2\left( {{{\left( {\frac{3}{4}} \right)}^{20}} + 4} \right)$

  • B

    $-2\left( {{{\left( {\frac{3}{4}} \right)}^{20}} + 4} \right)$

  • C

    $2\left( {{{\left( {\frac{3}{4}} \right)}^{20}} - 4} \right)$

  • D

    $-2\left( {{{\left( {\frac{3}{4}} \right)}^{20}} - 4} \right)$

Similar Questions

$2.{}^{20}{C_0} + 5.{}^{20}{C_1} + 8.{}^{20}{C_2} + 11.{}^{20}{C_3} + ......62.{}^{20}{C_{20}}$ is equal to

  • [JEE MAIN 2019]

If ${a_1},{a_2},{a_3},{a_4}$ are the coefficients of any four consecutive terms in the expansion of ${(1 + x)^n}$, then $\frac{{{a_1}}}{{{a_1} + {a_2}}} + \frac{{{a_3}}}{{{a_3} + {a_4}}}$ =

  • [IIT 1975]

If $S_n =$$\sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ and $T_n =$$\sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $ then $\frac{{{T_n}}}{{{S_n}}}$ is equal to

The expression $x^3 - 3x^2 - 9x + c$ can be written in the form $(x - a)^2 (x - b)$ if the values of $c$ is

If $\sum_{ r =0}^5 \frac{{ }^{11} C _{2 r +1}}{2 r +2}=\frac{ m }{ n }, \operatorname{gcd}( m , n )=1$, then $m - n$ is equal to _____

  • [JEE MAIN 2025]