$2.{}^{20}{C_0} + 5.{}^{20}{C_1} + 8.{}^{20}{C_2} + 11.{}^{20}{C_3} + ......62.{}^{20}{C_{20}}$ is equal to

  • [JEE MAIN 2019]
  • A

    ${2^{23}}$

  • B

    ${2^{26}}$

  • C

    ${2^{24}}$

  • D

    ${2^{25}}$

Similar Questions

If ${C_0},{C_1},{C_2},.......,{C_n}$ are the binomial coefficients, then $2.{C_1} + {2^3}.{C_3} + {2^5}.{C_5} + ....$ equals

The value of $\frac{1}{1 ! 50 !}+\frac{1}{3 ! 48 !}+\frac{1}{5 ! 46 !}+\ldots .+\frac{1}{49 ! 2 !}+\frac{1}{51 ! 1 !}$ is $.............$.

  • [JEE MAIN 2023]

The coefficient of $x ^{101}$ in the expression $(5+x)^{500}+x(5+x)^{499}+x^{2}(5+x)^{498}+\ldots . x^{500}$ $x>0$, is

  • [JEE MAIN 2022]

Coefficient of $x^{19}$ in the polynomial $(x-1) (x-2^1) (x-2^2) .... (x-2^{19})$ is

The number $111......1 $ ( $ 91$ times) is