If ${a_1},{a_2},{a_3},{a_4}$ are the coefficients of any four consecutive terms in the expansion of ${(1 + x)^n}$, then $\frac{{{a_1}}}{{{a_1} + {a_2}}} + \frac{{{a_3}}}{{{a_3} + {a_4}}}$ =

  • [IIT 1975]
  • A

    $\frac{{{a_2}}}{{{a_2} + {a_3}}}$

  • B

    $\frac{1}{2}\frac{{{a_2}}}{{({a_2} + {a_3})}}$

  • C

    $\frac{{2{a_2}}}{{{a_2} + {a_3}}}$

  • D

    $\frac{{2{a_3}}}{{{a_2} + {a_3}}}$

Similar Questions

The coefficient of $x^{49}$ in the expansion of $(x - 1)$$\left( {x\, - \,\frac{1}{2}\,} \right)$$\left( {x\, - \,\frac{1}{{{2^2}}}\,} \right)$ .....$\left( {x\, - \,\frac{1}{{{2^{49}}}}\,} \right)$ is equal to

The sum of last eigth coefficients in the expansion of $(1 + x)^{15}$ is :-

If ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}},$ then ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}} = $

  • [IIT 1966]

If $\mathrm{b}$ is very small as compared to the value of $\mathrm{a}$, so that the cube and other higher powers of $\frac{b}{a}$ can be neglected in the identity $\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b} \ldots .+\frac{1}{a-n b}=\alpha n+\beta n^{2}+\gamma n^{3}$, then the value of $\gamma$ is:

  • [JEE MAIN 2021]

If the sum of the coefficients in the expansion of ${(1 - 3x + 10{x^2})^n}$ is $a$ and if the sum of the coefficients in the expansion of ${(1 + {x^2})^n}$ is $b$, then