${\left| {{z_1} + {z_2}} \right|^2} + {\left| {{z_1} - {z_2}} \right|^2}$ is equal to
$2\left( {\left| {{z_1}} \right| + \left| {{z_2}} \right|} \right)$
$2\left( {{{\left| {{z_1}} \right|}^2} + {{\left| {{z_2}} \right|}^2}} \right)$
$\left| {{z_1}} \right|\left| {{z_2}} \right|$
${{{\left| {{z_1}} \right|}^2} + {{\left| {{z_2}} \right|}^2}}$
The amplitude of $\frac{{1 + \sqrt 3 i}}{{\sqrt 3 + 1}}$ is
Let $z$be a purely imaginary number such that ${\mathop{\rm Im}\nolimits} \,(z) > 0$. Then $arg(z)$ is equal to
If $|z|\, = 1,(z \ne - 1)$and $z = x + iy,$then $\left( {\frac{{z - 1}}{{z + 1}}} \right)$ is
Find the conjugate of $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$.
If $z_{1}=2-i, z_{2}=1+i,$ find $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$