Find the modulus and argument of the complex numbers:
$\frac{1}{1+i}$
We have $\frac{1}{1+i}=\frac{1-i}{(1+i)(1-i)}=\frac{1-i}{1+1}=\frac{1}{2}-\frac{i}{2}$
Let $\frac{1}{2}=r \cos \theta,-\frac{1}{2}=r \sin \theta$
Proceeding as in part $(i)$ above, we get $r=\frac{1}{\sqrt{2}} ; \cos \theta=\frac{1}{\sqrt{2}}, \sin \theta=\frac{-1}{\sqrt{2}}$
Therefore $\theta=\frac{-\pi}{4}$
Hence, the modulus of $\frac{1}{1+i}$ is $\frac{1}{\sqrt{2}},$ argument is $\frac{-\pi}{4}$.
If $z$ is a complex number such that $|z - \bar{z}| = 2$ and $|z + \bar{z}| = 4 $, then which of the following is always incorrect -
Let $A =\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1- i \sin \theta}\right.$ is purely imaginary $\}$. Then the sum of the elements in $A$ is
If $z$ is a complex number, then $(\overline {{z^{ - 1}}} )(\overline z ) = $
If ${z_1}$ and ${z_2}$ are two non-zero complex numbers such that $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|,$then arg $({z_1}) - $arg $({z_2})$ is equal to
If $z $ is a complex number of unit modulus and argument $\theta$, then ${\rm{arg}}\left( {\frac{{1 + z}}{{1 + (\bar z)}}} \right)$ equals.